{"title":"The Refractive Index Sensing Performance of Au and Ag Nanoparticles Under Different Surrounding Environment","authors":"Meiying Li, Kang Yang","doi":"10.1002/ppsc.202300143","DOIUrl":"https://doi.org/10.1002/ppsc.202300143","url":null,"abstract":"Benefiting from the sensitive response to the change of surrounding environment, localized surface plasmon resonance sensors have wide applications for the detection of bio-/chemical species. Traditionally, the sensitivity research of localized surface plasmon resonance sensors mainly focused on the morphologies and materials of sensor structures. Instead, the effect of environmental refractive index on sensitivity of a gold (Au) nanoparticle sensor is theoretically investigated in this work. The results show that when few free targets are adjacent to the sensor, a better sensing performance can be achieved as the refractive index increases from 1.00 to 1.10. However, when a target layer is closely covered on the Au nanoparticle, a 0.1 decrease in environmental refractive index can lead to a significant improvement in sensitivity. The similar results can be also obtained on a silver (Ag) nanoparticle. This work provides new understandings for advanced sensing applications of surface plasmon resonance sensors.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138541187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"(Part. Part. Syst. Charact. 11/2023)","authors":"","doi":"10.1002/ppsc.202370021","DOIUrl":"https://doi.org/10.1002/ppsc.202370021","url":null,"abstract":"Cover image provided courtesy of Tymish Y. Ohulchanskyy, Junle Qu, Anderson S. L. Gome, and co-workers.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138541183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Fabrication of Carbon Dots/Semiconductor Photocatalysts with Superior Photocatalytic Activity: A Review","authors":"Yao Zhang, Fanyong Yan, Xiule Wang, Runze Tong","doi":"10.1002/ppsc.202300131","DOIUrl":"https://doi.org/10.1002/ppsc.202300131","url":null,"abstract":"Abstract Semiconductor photocatalysts are being recognized as innovative materials for enhancing water quality and environmental optimization. Nevertheless, the limited activity and quick electron–hole pair recombination under visible light have hindered their widespread use in photocatalysis. Nanomaterials based on carbon dots (CDs) show promising applications due to their excellent light absorption ability. Notably, CDs/semiconductor photocatalysts have emerged as advanced photocatalytic materials. This review summarizes strategies to improve the performance of conventional semiconductor photocatalysts by incorporating CDs. These include TiO 2 , g‐C 3 N 4 , Bi‐based, Cu 2 O, and ZnO photocatalysts. Various effective synthesis routes for composites are discussed, including morphology optimization, heteroatom doping, heterojunction building, and creation of polymeric hybrids. Ultimately, the challenges and future prospects of CDs/semiconductor photocatalysts are discussed.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135819467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Templated Droplet Evaporation‐Based Supraparticles in Environmental Applications","authors":"Tulsi Satyavir Dabodiya, Kapil Dev Singh, Ravikant Verma, Bittesh Barman, Xuehua Zhang","doi":"10.1002/ppsc.202300080","DOIUrl":"https://doi.org/10.1002/ppsc.202300080","url":null,"abstract":"Abstract Designing of innovative technologies for the development of functional materials remain crucial for achieving sustainable technological advancements. In this regard, nanoparticles (NPs) possessing enormous potential properties can be obtained using various facile methods for several applications. Adopting NPs as primitive building blocks can initiate the formation of complex entities named supraparticle (SP) to create several advanced functional materials. Additionally, SPs enable entirely new material characteristics to the system, owing to their individual entities, intrinsic properties such as coupling, spatial arrangement, and co‐localization. Indeed, methods such as template‐induced evaporation‐based assembly of NPs direct the shape, size, and morphology of SPs from their respective colloidal dispersions on a solvent‐repellant solid surface. Therefore, it is important to comprehend the formation of SPs and their structure‐property relationship with respect to practical application. This review presents a brief overview of SPs assembly by outlining the templated‐assisted evaporation‐based methodologies for synthesizing SPs. Further, the effect of various factors on the interaction between colloidal entities, solvent, and substrate, leading to the genesis of SPs is elaborated. Conclusively, specific properties are described and applications of SPs for energy storage, generation, and environmental remediation are reported, which collectively brings many interdisciplinary research fields to the same podium.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134908780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbon Dot‐Based Fluorescence Resonance Energy Transfer (FRET) Systems for Biomedical, Sensing, and Imaging Applications","authors":"Abhilash Raj Gopal, Francis Joy, Vishal Dutta, Jyothis Devasia, Ramesh Dateer, Aatika Nizam","doi":"10.1002/ppsc.202300072","DOIUrl":"https://doi.org/10.1002/ppsc.202300072","url":null,"abstract":"Abstract Carbon dots (CDs) emerge as a potential group of photo‐luminescent nano‐materials due to their excellent optical, electrical, and chemical properties, as well as their competence in a wide range of environmental applications. CDs have unique and appealing properties such as excellent stability, low toxicity, water solubility, and derivability. When coupled with CDs, fluorescence resonance energy transfer (FRET) results in the development of highly sensitive ratiometric fluorescence sensor probes with potential applications in bio‐imaging, metal sensing, membrane dynamics, and environmental sensing. In this review, the progress and recent developments in CDs based FRET systems utilized for various environmental applications are conferred. An in‐depth description is provided regarding the numerous donor/acceptor systems which when integrated with CDs generate efficient FRET systems. The review enables researchers to identify and develop specific systems which can be utilized to generate a FRET pair with potential physico–chemical properties that aid the development of the same for various applications.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135112839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bramhaiah Kommula, Ramya Prabhu B, Harishankar Kopperi, Vinay S. Bhat, Gurumurthy Hegde, Neena S. John
{"title":"Diverse Morphologies of Nb<sub>2</sub>O<sub>5</sub> Nanomaterials: A Comparative Study for the Growth Optimization of Elongated Spiky Nb<sub>2</sub>O<sub>5</sub> and Carbon Nanosphere Composite","authors":"Bramhaiah Kommula, Ramya Prabhu B, Harishankar Kopperi, Vinay S. Bhat, Gurumurthy Hegde, Neena S. John","doi":"10.1002/ppsc.202300118","DOIUrl":"https://doi.org/10.1002/ppsc.202300118","url":null,"abstract":"Abstract Controlled synthesis and design of nanomaterials with intricate morphologies and active phases offer new prospects in harnessing their unique chemical and physical properties for various applications. Herein, a facile and efficient hydrothermal approach is reported for obtaining various complex Nb 2 O 5 nanostructures, including thin sheets, thick flakes, spiky and elongated spiky sea urchin morphologies using urotropin as a growth‐directing and hydrolyzing agent in various mixed and pure solvents. The detailed structural and chemical composition, surface morphology and crystallinity of as‐synthesized Nb 2 O 5 nanostructures are presented. The urotropin concentration, reaction time, and water‐ethanol solvent mixture play a critical role for obtaining the elongated spiky sea urchin morphologies. The spiky Nb 2 O 5 structures show a pseudohexagonal phase with less urotropin content, while thin sheets are obtained with a higher urotropin concentration and are primarily amorphous. These structures undergo transformation in their crystal phase and morphologies during calcination at higher temperatures revealing the active role of urotropin in stabilizing them. A composite of spiky sea urchin Nb 2 O 5 ‐carbon nanospheres (suNb 2 O 5 ‐CNS) is achieved by in‐situ growth of Nb 2 O 5 in the presence of CNS without compromising on morphology, phase, and crystallinity. suNb 2 O 5 ‐CNS composite is shown to possess higher charge storage capacity compared to its constituents for supercapacitor applications.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135170425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering of Layered Nanocarriers of Quercetin for the Treatment of Diabetes Using Box‐Behnken Design","authors":"Priyank Shah, Pravin Shende","doi":"10.1002/ppsc.202300037","DOIUrl":"https://doi.org/10.1002/ppsc.202300037","url":null,"abstract":"Abstract Layered nanocarriers are polymeric systems integrated with layers of glucose‐responsive polymers and polyethylene glycol monomethyl ether 2000 PEG 2000 to enhance the targeting effect and release kinetics. The prime purpose of this research study is to demonstrate a controlled release of Quercetin from formulation of quercetin (Qu)‐based layered nanocarriers (LNCs) with higher stability and anti‐diabetic activity. The QuLNCs are synthesized using the nanoprecipitation method and optimized by Box‐Behnken design of the Design of Experiment (DoE) method. The Quercetin Nanoparticles (QuNPs) are prepared using Polyvinyl alcohol (PVA) and Poly (D,L‐ lactic‐co‐glycolic acid) (PLGA) polymers where the two layers of Phenylboronic acid (PBA) are conjugated using 3‐amino propyl‐triethoxysilane (APTES) as a functionalizing agent followed by PEGylation of the entire system using PEG 2000 . The optimized QuLNCs are characterized by various parameters like Particle size (PS), Zeta potential (ZP), % Entrapment efficiency (%EE), Attenuated total reflectance‐ Fourier Transform Infrared Spectroscopy (ATR‐FTIR), Differential scanning Calorimetry (DSC), Transmission electron microscopy (TEM), in vitro as well as in vivo studies. The QuLNCs showed a % entrapment efficiency of 82.846 ± 0.957% and release of 85.04 ± 3.21% of Qu for 24 h from the layered nanocarriers. The in vivo studies of QuLNCs exhibited a significant controlled release of quercetin for modulating blood glucose levels. Hence, these results proved QuLNCs system acts as a favorable approach for the treatment of type 1 diabetes to offer a longer duration of action.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135405145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancement of Bifunctional Catalytic Performance of G‐C<sub>3</sub>N<sub>4</sub>@ Ag Composite by NaBH<sub>4</sub> Etching","authors":"Yue‐Feng Tang, Meng‐Yun Zhao, Guo‐Zhi Han","doi":"10.1002/ppsc.202300109","DOIUrl":"https://doi.org/10.1002/ppsc.202300109","url":null,"abstract":"Abstract Herein, a novel composite of g‐C 3 N 4 and silver nanoparticles(g‐C 3 N 4 @Ag) with enhanced bifunctional catalytic activity through chemical etching is reported. A kind of g‐C 3 N 4 @Ag composite by one‐pot route, then treated the product with sodium borohydride (NaBH 4 ) solution for a certain time is first synthesized. The property and morphology of the g‐C 3 N 4 @Ag composite changed greatly after the treatment. Compared with the pristine g‐C 3 N 4 @Ag composite, the NaBH 4 ‐etching endowed g‐C 3 N 4 @Ag composite (RACN) with smoother two‐dimensional plane structure, as well as an extension of the conjugate system which originating from the stronger chemical connection between the Ag nanoparticles and g‐C 3 N 4 . Furthermore, research results indicated that the RACN showed superior broad‐spectrum catalytic performance for the reduction of aromatic nitro compounds, and the catalytic efficiency of the RACN is enhanced dozens of times by the treatment. Moreover, the photocatalytic activity of the RACN is also greatly improved. This discovery provides an efficient and facile method toward the enhancement of catalytic activity of semiconductor and metal nanoparticle composites by chemical etching.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135368159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niklas Wolff, Maren Dworschak, Jan Benedikt, Lorenz Kienle
{"title":"Transmission Electron Microscopy Investigation of Self‐assembled 'Si/Mn<sub>4</sub>Si<sub>7</sub>‐Alloy' Janus Nanosphere Architectures Produced by a HelixJet Atmospheric Plasma Source","authors":"Niklas Wolff, Maren Dworschak, Jan Benedikt, Lorenz Kienle","doi":"10.1002/ppsc.202300094","DOIUrl":"https://doi.org/10.1002/ppsc.202300094","url":null,"abstract":"Abstract The HelixJet atmospheric plasma‐assisted synthesis can be a new toolbox to realize dedicated nanoparticle architectures such as Janus‐type morphologies. Silicon nanoparticles produced by the decomposition of Silane molecules are directed into an in‐flight annealing stage. The applied high‐temperature supplies a metal vapor rich atmosphere containing Manganese, Chromium, Iron, and Tin outgassing from the used steel tube. The metal atoms alloy into the Silicon nanoparticles and form a self‐assembled 'Si/Mn x Si y ‐alloy' Janus nanosphere architecture. The Janus particles nanochemistry is thoroughly examined in detail by the analytic capabilities of transmission electron microscopy. The combined approach of electron diffraction, EDS, and EELS identifies the Janus particle composition consisting of a pure Si hemisphere interfaced to an alloyed Mn 4 Si 7 hemisphere covered by a thin (Mn a Fe b Cr c )Si y surface shell.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135758772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}