Bramhaiah Kommula, Ramya Prabhu B, Harishankar Kopperi, Vinay S. Bhat, Gurumurthy Hegde, Neena S. John
{"title":"不同形貌Nb2O5纳米材料:细长尖形Nb2O5与碳纳米球复合材料生长优化的比较研究","authors":"Bramhaiah Kommula, Ramya Prabhu B, Harishankar Kopperi, Vinay S. Bhat, Gurumurthy Hegde, Neena S. John","doi":"10.1002/ppsc.202300118","DOIUrl":null,"url":null,"abstract":"Abstract Controlled synthesis and design of nanomaterials with intricate morphologies and active phases offer new prospects in harnessing their unique chemical and physical properties for various applications. Herein, a facile and efficient hydrothermal approach is reported for obtaining various complex Nb 2 O 5 nanostructures, including thin sheets, thick flakes, spiky and elongated spiky sea urchin morphologies using urotropin as a growth‐directing and hydrolyzing agent in various mixed and pure solvents. The detailed structural and chemical composition, surface morphology and crystallinity of as‐synthesized Nb 2 O 5 nanostructures are presented. The urotropin concentration, reaction time, and water‐ethanol solvent mixture play a critical role for obtaining the elongated spiky sea urchin morphologies. The spiky Nb 2 O 5 structures show a pseudohexagonal phase with less urotropin content, while thin sheets are obtained with a higher urotropin concentration and are primarily amorphous. These structures undergo transformation in their crystal phase and morphologies during calcination at higher temperatures revealing the active role of urotropin in stabilizing them. A composite of spiky sea urchin Nb 2 O 5 ‐carbon nanospheres (suNb 2 O 5 ‐CNS) is achieved by in‐situ growth of Nb 2 O 5 in the presence of CNS without compromising on morphology, phase, and crystallinity. suNb 2 O 5 ‐CNS composite is shown to possess higher charge storage capacity compared to its constituents for supercapacitor applications.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diverse Morphologies of Nb<sub>2</sub>O<sub>5</sub> Nanomaterials: A Comparative Study for the Growth Optimization of Elongated Spiky Nb<sub>2</sub>O<sub>5</sub> and Carbon Nanosphere Composite\",\"authors\":\"Bramhaiah Kommula, Ramya Prabhu B, Harishankar Kopperi, Vinay S. Bhat, Gurumurthy Hegde, Neena S. John\",\"doi\":\"10.1002/ppsc.202300118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Controlled synthesis and design of nanomaterials with intricate morphologies and active phases offer new prospects in harnessing their unique chemical and physical properties for various applications. Herein, a facile and efficient hydrothermal approach is reported for obtaining various complex Nb 2 O 5 nanostructures, including thin sheets, thick flakes, spiky and elongated spiky sea urchin morphologies using urotropin as a growth‐directing and hydrolyzing agent in various mixed and pure solvents. The detailed structural and chemical composition, surface morphology and crystallinity of as‐synthesized Nb 2 O 5 nanostructures are presented. The urotropin concentration, reaction time, and water‐ethanol solvent mixture play a critical role for obtaining the elongated spiky sea urchin morphologies. The spiky Nb 2 O 5 structures show a pseudohexagonal phase with less urotropin content, while thin sheets are obtained with a higher urotropin concentration and are primarily amorphous. These structures undergo transformation in their crystal phase and morphologies during calcination at higher temperatures revealing the active role of urotropin in stabilizing them. A composite of spiky sea urchin Nb 2 O 5 ‐carbon nanospheres (suNb 2 O 5 ‐CNS) is achieved by in‐situ growth of Nb 2 O 5 in the presence of CNS without compromising on morphology, phase, and crystallinity. suNb 2 O 5 ‐CNS composite is shown to possess higher charge storage capacity compared to its constituents for supercapacitor applications.\",\"PeriodicalId\":19903,\"journal\":{\"name\":\"Particle & Particle Systems Characterization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle & Particle Systems Characterization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ppsc.202300118\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ppsc.202300118","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Diverse Morphologies of Nb2O5 Nanomaterials: A Comparative Study for the Growth Optimization of Elongated Spiky Nb2O5 and Carbon Nanosphere Composite
Abstract Controlled synthesis and design of nanomaterials with intricate morphologies and active phases offer new prospects in harnessing their unique chemical and physical properties for various applications. Herein, a facile and efficient hydrothermal approach is reported for obtaining various complex Nb 2 O 5 nanostructures, including thin sheets, thick flakes, spiky and elongated spiky sea urchin morphologies using urotropin as a growth‐directing and hydrolyzing agent in various mixed and pure solvents. The detailed structural and chemical composition, surface morphology and crystallinity of as‐synthesized Nb 2 O 5 nanostructures are presented. The urotropin concentration, reaction time, and water‐ethanol solvent mixture play a critical role for obtaining the elongated spiky sea urchin morphologies. The spiky Nb 2 O 5 structures show a pseudohexagonal phase with less urotropin content, while thin sheets are obtained with a higher urotropin concentration and are primarily amorphous. These structures undergo transformation in their crystal phase and morphologies during calcination at higher temperatures revealing the active role of urotropin in stabilizing them. A composite of spiky sea urchin Nb 2 O 5 ‐carbon nanospheres (suNb 2 O 5 ‐CNS) is achieved by in‐situ growth of Nb 2 O 5 in the presence of CNS without compromising on morphology, phase, and crystallinity. suNb 2 O 5 ‐CNS composite is shown to possess higher charge storage capacity compared to its constituents for supercapacitor applications.
期刊介绍:
Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices.
Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems.
Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others.
Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.