Pharmaceutics最新文献

筛选
英文 中文
Stable Polymer-Lipid Hybrid Nanoparticles Based on mcl-Polyhydroxyalkanoate and Cationic Liposomes for mRNA Delivery. 基于 mcl-Polyhydroxyalkanoate 和阳离子脂质体的稳定聚合物-脂质混合纳米颗粒用于 mRNA 输送。
IF 4.9 3区 医学
Pharmaceutics Pub Date : 2024-10-07 DOI: 10.3390/pharmaceutics16101305
Sergey M Shishlyannikov, Ilya N Zubkov, Vera V Vysochinskaya, Nina V Gavrilova, Olga A Dobrovolskaya, Ekaterina A Elpaeva, Mikhail A Maslov, Andrey Vasin
{"title":"Stable Polymer-Lipid Hybrid Nanoparticles Based on <i>mcl</i>-Polyhydroxyalkanoate and Cationic Liposomes for mRNA Delivery.","authors":"Sergey M Shishlyannikov, Ilya N Zubkov, Vera V Vysochinskaya, Nina V Gavrilova, Olga A Dobrovolskaya, Ekaterina A Elpaeva, Mikhail A Maslov, Andrey Vasin","doi":"10.3390/pharmaceutics16101305","DOIUrl":"https://doi.org/10.3390/pharmaceutics16101305","url":null,"abstract":"<p><p><b>Background/Objectives:</b> The development of polymer-lipid hybrid nanoparticles (PLNs) is a promising area of research, as it can help increase the stability of cationic lipid carriers. Hybrid PLNs are core-shell nanoparticle structures that combine the advantages of both polymer nanoparticles and liposomes, especially in terms of their physical stability and biocompatibility. Natural polymers such as polyhydroxyalkanoate (PHA) can be used as a matrix for the PLNs' preparation. <b>Methods</b>: In this study, we first obtained stable cationic hybrid PLNs using a cationic liposome (CL) composed of a polycationic lipid 2X3 (1,26-bis(cholest-5-<i>en</i>-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride), helper lipid DOPE (1,2-dioleoyl-<i>sn</i>-glycero-3-phosphoethanolamine), and the hydrophobic polymer <i>mcl</i>-PHA, which was produced by the soil bacterium <i>Pseudomonas helmantisensis</i> P1. <b>Results</b>: The new polymer-lipid carriers effectively encapsulated and delivered model mRNA-eGFP (enhanced green fluorescent protein mRNA) to BHK-21 cells. We then evaluated the role of <i>mcl</i>-PHA in increasing the stability of cationic PLNs in ionic solutions using dynamic light scattering data, electrophoretic mobility, and transmission electron microscopy techniques. <b>Conclusions</b>: The results showed that increasing the concentration of PBS (phosphate buffered saline) led to a decrease in the stability of the CLs. At high concentrations of PBS, the CLs aggregate. In contrast, the presence of isotonic PBS did not result in the aggregation of PLNs, and the particles remained stable for 120 h when stored at +4 °C. The obtained results show that PLNs hold promise for further in vivo studies on nucleic acid delivery.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Numerical Simulation Technology to Advance Drug Preparation: A Comprehensive Review of Application Scenarios and Cases. 利用数值模拟技术推进药物制剂:应用场景和案例的全面回顾。
IF 4.9 3区 医学
Pharmaceutics Pub Date : 2024-10-07 DOI: 10.3390/pharmaceutics16101304
Qifei Gu, Huichao Wu, Xue Sui, Xiaodan Zhang, Yongchao Liu, Wei Feng, Rui Zhou, Shouying Du
{"title":"Leveraging Numerical Simulation Technology to Advance Drug Preparation: A Comprehensive Review of Application Scenarios and Cases.","authors":"Qifei Gu, Huichao Wu, Xue Sui, Xiaodan Zhang, Yongchao Liu, Wei Feng, Rui Zhou, Shouying Du","doi":"10.3390/pharmaceutics16101304","DOIUrl":"https://doi.org/10.3390/pharmaceutics16101304","url":null,"abstract":"<p><strong>Background/objectives: </strong>Numerical simulation plays an important role in pharmaceutical preparation recently. Mechanistic models, as a type of numerical model, are widely used in the study of pharmaceutical preparations. Mechanistic models are based on a priori knowledge, i.e., laws of physics, chemistry, and biology. However, due to interdisciplinary reasons, pharmacy researchers have greater difficulties in using computer models.</p><p><strong>Methods: </strong>In this paper, we highlight the application scenarios and examples of mechanistic modelling in pharmacy research and provide a reference for drug researchers to get started.</p><p><strong>Results: </strong>By establishing a suitable model and inputting preparation parameters, researchers can analyze the drug preparation process. Therefore, mechanistic models are effective tools to optimize the preparation parameters and predict potential quality problems of the product. With product quality parameters as the ultimate goal, the experiment design is optimized by mechanistic models. This process emphasizes the concept of quality by design.</p><p><strong>Conclusions: </strong>The use of numerical simulation saves experimental cost and time, and speeds up the experimental process. In pharmacy experiments, part of the physical information and the change processes are difficult to obtain, such as the mechanical phenomena during tablet compression and the airflow details in the nasal cavity. Therefore, it is necessary to predict the information and guide the formulation with the help of mechanistic models.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic Nanoparticles for Basic Drug Delivery. 用于基础药物输送的仿生纳米颗粒。
IF 4.9 3区 医学
Pharmaceutics Pub Date : 2024-10-07 DOI: 10.3390/pharmaceutics16101306
Andrey Tikhonov, Artyom Kachanov, Alexandra Yudaeva, Oleg Danilik, Natalia Ponomareva, Ivan Karandashov, Anastasiya Kostyusheva, Andrey A Zamyatnin, Alessandro Parodi, Vladimir Chulanov, Sergey Brezgin, Dmitry Kostyushev
{"title":"Biomimetic Nanoparticles for Basic Drug Delivery.","authors":"Andrey Tikhonov, Artyom Kachanov, Alexandra Yudaeva, Oleg Danilik, Natalia Ponomareva, Ivan Karandashov, Anastasiya Kostyusheva, Andrey A Zamyatnin, Alessandro Parodi, Vladimir Chulanov, Sergey Brezgin, Dmitry Kostyushev","doi":"10.3390/pharmaceutics16101306","DOIUrl":"https://doi.org/10.3390/pharmaceutics16101306","url":null,"abstract":"<p><p>Biomimetic nanoparticles (BMNPs) are innovative nanovehicles that replicate the properties of naturally occurring extracellular vesicles, facilitating highly efficient drug delivery across biological barriers to target organs and tissues while ensuring maximal biocompatibility and minimal-to-no toxicity. BMNPs can be utilized for the delivery of therapeutic payloads and for imparting novel properties to other nanotechnologies based on organic and inorganic materials. The application of specifically modified biological membranes for coating organic and inorganic nanoparticles has the potential to enhance their therapeutic efficacy and biocompatibility, presenting a promising pathway for the advancement of drug delivery technologies. This manuscript is grounded in the fundamentals of biomimetic technologies, offering a comprehensive overview and analytical perspective on the preparation and functionalization of BMNPs, which include cell membrane-coated nanoparticles (CMCNPs), artificial cell-derived vesicles (ACDVs), and fully synthetic vesicles (fSVs). This review examines both \"top-down\" and \"bottom-up\" approaches for nanoparticle preparation, with a particular focus on techniques such as cell membrane coating, cargo loading, and microfluidic fabrication. Additionally, it addresses the technological challenges and potential solutions associated with the large-scale production and clinical application of BMNPs and related technologies.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510494/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stiff-Soft Hybrid Biomimetic Nano-Emulsion for Targeted Liver Delivery and Treatment of Early Nonalcoholic Fatty Liver Disease. 硬软混合仿生纳米乳液用于肝脏靶向输送和早期非酒精性脂肪肝的治疗
IF 4.9 3区 医学
Pharmaceutics Pub Date : 2024-10-07 DOI: 10.3390/pharmaceutics16101303
Juan Li, Mingxing Yin, Maoxian Tian, Jianguo Fang, Hanlin Xu
{"title":"Stiff-Soft Hybrid Biomimetic Nano-Emulsion for Targeted Liver Delivery and Treatment of Early Nonalcoholic Fatty Liver Disease.","authors":"Juan Li, Mingxing Yin, Maoxian Tian, Jianguo Fang, Hanlin Xu","doi":"10.3390/pharmaceutics16101303","DOIUrl":"https://doi.org/10.3390/pharmaceutics16101303","url":null,"abstract":"<p><p><b>Background:</b> Nonalcoholic fatty liver disease (NAFLD) poses a risk for numerous metabolic diseases. To date, the U.S. Food and Drug Administration has not yet approved any medications for the treatment of NAFLD, for which developing therapeutic drugs is urgent. Dihydromyricetin (DMY), the most abundant flavonoid in vine tea, has been shown to be hepatoprotective. Its application was limited by low bioavailability in vivo; <b>Methods:</b> In order to improve the bioavailability of DMY and achieve liver-targeted delivery, we designed a DMY-loaded stiff-soft hybrid biomimetic nano drug delivery system (DMY-hNE). The in vivo absorption, distribution, pharmacokinetic profiles, and anti-NAFLD efficacy of DMY-hNE were studied; <b>Results:</b> DMY-hNE was composed of a stiff core and soft shell, which led to enhanced uptake by gastrointestinal epithelial cells and increased penetration of the mucus barrier, thus improving the in vivo absorption, plasma DMY concentration, and liver distribution versus free DMY. In an early NAFLD mouse model, DMY-hNE effectively ameliorated fatty lesions accompanied with reduced lipid levels and liver tissue inflammation; <b>Conclusions:</b> These findings suggested that DMY-hNE is a promising platform for liver drug delivery and treatment of hepatopathy.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510375/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PLGA-PEG Nanoparticles Loaded with Cdc42 Inhibitor for Colorectal Cancer Targeted Therapy. 载入 Cdc42 抑制剂的 PLGA-PEG 纳米粒子用于结直肠癌靶向治疗
IF 4.9 3区 医学
Pharmaceutics Pub Date : 2024-10-06 DOI: 10.3390/pharmaceutics16101301
Sanazar Kadyr, Altyn Zhuraliyeva, Aislu Yermekova, Aigerim Makhambetova, Daulet B Kaldybekov, Ellina A Mun, Denis Bulanin, Sholpan N Askarova, Bauyrzhan A Umbayev
{"title":"PLGA-PEG Nanoparticles Loaded with Cdc42 Inhibitor for Colorectal Cancer Targeted Therapy.","authors":"Sanazar Kadyr, Altyn Zhuraliyeva, Aislu Yermekova, Aigerim Makhambetova, Daulet B Kaldybekov, Ellina A Mun, Denis Bulanin, Sholpan N Askarova, Bauyrzhan A Umbayev","doi":"10.3390/pharmaceutics16101301","DOIUrl":"https://doi.org/10.3390/pharmaceutics16101301","url":null,"abstract":"<p><p><b>Background/Objectives:</b> An inhibitor of small Rho GTPase Cdc42, CASIN, has been shown to reduce cancer cell proliferation, migration, and invasion, yet it has several limitations, including rapid drug elimination and low bioavailability, which prevents its systemic administration. In this study, we designed and characterized a nanoparticle-based delivery system for CASIN encapsulated within poly(lactide-co-glycolide)-block-poly(ethylene glycol)-carboxylic acid endcap nanoparticles (PLGA-PEG-COOH NPs) for targeted inhibition of Cdc42 activity in colon cancer. <b>Methods:</b> We applied DLS, TEM, and UV-vis spectroscopy methods to characterize the size, polydispersity index, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release of the synthesized nanoparticles. The CCK-8 cell viability test was used to study colorectal cancer cell growth in vitro. <b>Results:</b> We showed that CASIN-PLGA-PEG-COOH NPs were smooth, spherical, and had a particle size of 86 ± 1 nm, with an encapsulation efficiency of 66 ± 5% and a drug-loading capacity of 5 ± 1%. CASIN was gradually released from NPs, reaching its peak after 24 h, and could effectively inhibit the proliferation of HT-29 (IC50 = 19.55 µM), SW620 (IC50 = 9.33 µM), and HCT116 (IC50 = 10.45 µM) cells in concentrations ranging between 0.025-0.375 mg/mL. CASIN-PLGA-PEG-COOH NPs demonstrated low hemolytic activity with a hemolytic ratio of less than 1% for all tested concentrations. <b>Conclusion:</b> CASIN-PLGA-PEG-COOH NPs have high encapsulation efficiency, sustained drug release, good hemocompatibility, and antitumor activity in vitro. Our results suggest that PLGA-PEG-COOH nanoparticles loaded with CASIN show potential as a targeted treatment for colorectal cancer and could be recommended for further in vivo evaluation.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing an Ex Vivo Skin Penetration Analysis Model for Predicting Ocular Drug Penetration: A Feasibility Study with Curcumin Formulations. 利用体内皮肤渗透分析模型预测眼部药物渗透:姜黄素制剂的可行性研究。
IF 4.9 3区 医学
Pharmaceutics Pub Date : 2024-10-06 DOI: 10.3390/pharmaceutics16101302
Christian Raab, Stefan Brugger, Jara-Sophie Lechner, Geisa Nascimento Barbalho, Taís Gratieri, Priyanka Agarwal, Ilva D Rupenthal, Cornelia M Keck
{"title":"Utilizing an Ex Vivo Skin Penetration Analysis Model for Predicting Ocular Drug Penetration: A Feasibility Study with Curcumin Formulations.","authors":"Christian Raab, Stefan Brugger, Jara-Sophie Lechner, Geisa Nascimento Barbalho, Taís Gratieri, Priyanka Agarwal, Ilva D Rupenthal, Cornelia M Keck","doi":"10.3390/pharmaceutics16101302","DOIUrl":"https://doi.org/10.3390/pharmaceutics16101302","url":null,"abstract":"<p><p><b>Objective:</b> This study aimed to investigate the feasibility of using the digital image processing technique, developed to semi-quantitatively study dermal penetration, to study corneal penetration in an ex vivo porcine eye model. Here, we investigated various formulation strategies intended to enhance dermal and corneal bioavailability of the model hydrophobic drug, curcumin.</p><p><strong>Methods: </strong>Several formulation principles were explored, including oily solutions, oily suspensions, aqueous nanosuspension, micelles, liposomes and cyclodextrins. The dermal penetration efficacy was tested using an ex vivo porcine ear model previously developed at Philipps-Universität Marburg with subsequent digital image processing. This image analysis method was further applied to study corneal penetration using an ex vivo porcine whole-eye model.</p><p><strong>Results: </strong>For dermal penetration, oily solutions, oily suspensions and nanosuspensions exhibited the least penetration, whereas liposomes and cyclodextrins showed enhanced penetration. Corneal curcumin penetration correlated with dermal penetration, with curcumin loaded into cyclodextrins penetrating the deepest.</p><p><strong>Conclusions: </strong>Overall, our study suggests that the image analysis method previously developed for ex vivo skin penetration can easily be repurposed to study corneal penetration of hydrophobic drugs.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encapsulation of Phloroglucinol from Rosenvingea intricata Macroalgae with Zinc Oxide Nanoparticles against A549 Lung Cancer Cells. 用氧化锌纳米颗粒包封 Rosenvingea intricata 大型藻类中的 Phloroglucinol,对抗 A549 肺癌细胞。
IF 4.9 3区 医学
Pharmaceutics Pub Date : 2024-10-05 DOI: 10.3390/pharmaceutics16101300
Sakthivel Muthu, Mythileeswari Lakshmikanthan, Edwin Edward-Sam, Mutheeswaran Subramanian, Lakshmanan Govindan, Afrina Begum Mithen Patcha, Kathiravan Krishnan, Nallusamy Duraisamy, Selvakumari Jeyaperumal, Al Thabiani Aziz
{"title":"Encapsulation of Phloroglucinol from <i>Rosenvingea intricata</i> Macroalgae with Zinc Oxide Nanoparticles against A549 Lung Cancer Cells.","authors":"Sakthivel Muthu, Mythileeswari Lakshmikanthan, Edwin Edward-Sam, Mutheeswaran Subramanian, Lakshmanan Govindan, Afrina Begum Mithen Patcha, Kathiravan Krishnan, Nallusamy Duraisamy, Selvakumari Jeyaperumal, Al Thabiani Aziz","doi":"10.3390/pharmaceutics16101300","DOIUrl":"https://doi.org/10.3390/pharmaceutics16101300","url":null,"abstract":"<p><strong>Background/objectives: </strong>Phloroglucinol (PHL), a phenolic compound extracted from the brown alga <i>Rosenvingea intricata</i>, exhibits potent antioxidant and anticancer properties. This study aims to extract, purify, and characterize PHL, and further develop functionalized zinc oxide nanoparticles (ZnO NPs) loaded with PHL to enhance its therapeutic potential.</p><p><strong>Methods: </strong>PHL was extracted using acetone and purified through Sephadex LH-20 column chromatography, yielding a highly enriched fraction (F-3). The purified compound was characterized by FTIR, HPLC, NMR, and LC-MS. ZnO NPs were synthesized, PEGylated, and conjugated with PHL, forming ZnO-PEG-PHL NPs. Their characterization included DLS, zeta potential, XRD, SEM-EDAX, and encapsulation efficiency studies. Antioxidant assays (DPPH, FRAP, ABTS, RPA) were performed and in vitro cytotoxicity on A549 lung cancer cells were determined to evaluate the therapeutic efficacy of PHL.</p><p><strong>Results: </strong>The purified PHL fraction showed a high phenolic content (45.65 PHL mg/g), which was was confirmed by spectral analysis. The ZnO-PEG-PHL NPs increased in size from 32.36 nm to 46.68 nm, with their zeta potential shifting from -37.87 mV to -26.82 mV. The antioxidant activity was superior for the ZnO-PEG-PHL NPs in all assays, while the in vitro cytotoxicity tests showed an IC<sub>50</sub> of 40 µg/mL compared to 60 µg/mL for the ZnO NPs and 70 µg/mL for PHL. Apoptotic studies revealed significant cell cycle arrest and apoptosis induction.</p><p><strong>Conclusions: </strong>The synthesized ZnO-PEG-PHL NPs demonstrated enhanced antioxidant and anticancer properties, making them promising candidates for cancer therapy and antioxidant applications.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell Therapy for Retinal Degenerative Diseases: Progress and Prospects. 细胞疗法治疗视网膜退行性疾病:进展与前景》。
IF 4.9 3区 医学
Pharmaceutics Pub Date : 2024-10-05 DOI: 10.3390/pharmaceutics16101299
Kevin Y Wu, Jaskarn K Dhaliwal, Akash Sasitharan, Ananda Kalevar
{"title":"Cell Therapy for Retinal Degenerative Diseases: Progress and Prospects.","authors":"Kevin Y Wu, Jaskarn K Dhaliwal, Akash Sasitharan, Ananda Kalevar","doi":"10.3390/pharmaceutics16101299","DOIUrl":"https://doi.org/10.3390/pharmaceutics16101299","url":null,"abstract":"<p><p><b>Background/Objectives:</b> Age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are leading causes of vision loss, with AMD affecting older populations and RP being a rarer, genetically inherited condition. Both diseases result in progressive retinal degeneration, for which current treatments remain inadequate in advanced stages. This review aims to provide an overview of the retina's anatomy and physiology, elucidate the pathophysiology of AMD and RP, and evaluate emerging cell-based therapies for these conditions. <b>Methods:</b> A comprehensive review of the literature was conducted, focusing on cell therapy approaches, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells. Preclinical and clinical studies were analyzed to assess therapeutic potential, with attention to mechanisms such as cell replacement, neuroprotection, and paracrine effects. Relevant challenges, including ethical concerns and clinical translation, were also explored. <b>Results:</b> Cell-based therapies demonstrate potential for restoring retinal function and slowing disease progression through mechanisms like neuroprotection and cell replacement. Preclinical trials show promising outcomes, but clinical studies face significant hurdles, including challenges in cell delivery and long-term efficacy. Combination therapies integrating gene editing and biomaterials offer potential future advancements. <b>Conclusions:</b> While cell-based therapies for AMD and RP have made significant progress, substantial barriers to clinical application remain. Further research is essential to overcome these obstacles, improve delivery methods, and ensure the safe and effective translation of these therapies into clinical practice.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Characterization of Film-Forming Solution Loaded with Syzygium cumini (L.) Skeels for Topical Application in Post-Surgical Therapies. 用于手术后局部治疗的含茜草(L. Skeels)的成膜溶液的开发和表征。
IF 4.9 3区 医学
Pharmaceutics Pub Date : 2024-10-04 DOI: 10.3390/pharmaceutics16101294
Rosinéia Aparecida Vilela Cebrian, Mariana Dalmagro, Mariana Moraes Pinc, Guilherme Donadel, Larissa Aparecida Engel, Reinaldo Aparecido Bariccatti, Rafael Menck de Almeida, Kelen Menezes Flores Rossi de Aguiar, Emerson Luiz Botelho Lourenço, Jaqueline Hoscheid
{"title":"Development and Characterization of Film-Forming Solution Loaded with <i>Syzygium cumini</i> (L.) Skeels for Topical Application in Post-Surgical Therapies.","authors":"Rosinéia Aparecida Vilela Cebrian, Mariana Dalmagro, Mariana Moraes Pinc, Guilherme Donadel, Larissa Aparecida Engel, Reinaldo Aparecido Bariccatti, Rafael Menck de Almeida, Kelen Menezes Flores Rossi de Aguiar, Emerson Luiz Botelho Lourenço, Jaqueline Hoscheid","doi":"10.3390/pharmaceutics16101294","DOIUrl":"https://doi.org/10.3390/pharmaceutics16101294","url":null,"abstract":"<p><strong>Background/objectives: </strong>Considering the antioxidant and antimicrobial properties attributed to compounds in <i>Syzygium cumini</i> extract, this research aimed to advance postoperative therapeutic innovations. Specifically, the study assessed the physicochemical properties of a film-forming solution (FFS) incorporated with <i>S. cumini</i>, evaluating its therapeutic potential for postoperative applications.</p><p><strong>Methods: </strong>The <i>S. cumini</i> extract was meticulously characterized to determine its chemical composition, with particular emphasis on the concentration of phenolic compounds. Antioxidant and antimicrobial assays were conducted to assess the extract's efficacy in these domains. Following this, an FFS containing <i>S. cumini</i> was formulated and evaluated comprehensively for skin adhesion, mechanical and barrier properties, and thermal behavior.</p><p><strong>Results: </strong>The antioxidant and antimicrobial activities of the <i>S. cumini</i> extract demonstrated promising results, indicating its potential utility as an adjunct in postoperative care. The developed FFS exhibited favorable physicochemical properties for topical application, including adequate skin adhesion and appropriate pH levels. Moreover, chemical and thermal analyses confirmed the formulation's stability and the retention of the extract's beneficial properties.</p><p><strong>Conclusions: </strong>Overall, the findings suggest that the <i>S. cumini</i>-loaded FFS holds significant potential as a valuable therapeutic tool for post-surgical management.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Acute Migraine Treatment: Exploring Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for the Nose-to-Brain Route. 加强急性偏头痛治疗:探索鼻脑通路的固体脂质纳米颗粒和纳米结构脂质载体。
IF 4.9 3区 医学
Pharmaceutics Pub Date : 2024-10-04 DOI: 10.3390/pharmaceutics16101297
Joana Torres, Renata Silva, Gonçalo Farias, José Manuel Sousa Lobo, Domingos Carvalho Ferreira, Ana Catarina Silva
{"title":"Enhancing Acute Migraine Treatment: Exploring Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for the Nose-to-Brain Route.","authors":"Joana Torres, Renata Silva, Gonçalo Farias, José Manuel Sousa Lobo, Domingos Carvalho Ferreira, Ana Catarina Silva","doi":"10.3390/pharmaceutics16101297","DOIUrl":"https://doi.org/10.3390/pharmaceutics16101297","url":null,"abstract":"<p><p>Migraine has a high prevalence worldwide and is one of the main disabling neurological diseases in individuals under the age of 50. In general, treatment includes the use of oral analgesics or non-steroidal anti-inflammatory drugs (NSAIDs) for mild attacks, and, for moderate or severe attacks, triptans or 5-HT<sub>1B/1D</sub> receptor agonists. However, the administration of antimigraine drugs in conventional oral pharmaceutical dosage forms is a challenge, since many molecules have difficulty crossing the blood-brain barrier (BBB) to reach the brain, which leads to bioavailability problems. Efforts have been made to find alternative delivery systems and/or routes for antimigraine drugs. In vivo studies have shown that it is possible to administer drugs directly into the brain via the intranasal (IN) or the nose-to-brain route, thus avoiding the need for the molecules to cross the BBB. In this field, the use of lipid nanoparticles, in particular solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), has shown promising results, since they have several advantages for drugs administered via the IN route, including increased absorption and reduced enzymatic degradation, improving bioavailability. Furthermore, SLN and NLC are capable of co-encapsulating drugs, promoting their simultaneous delivery to the site of therapeutic action, which can be a promising approach for the acute migraine treatment. This review highlights the potential of using SLN and NLC to improve the treatment of acute migraine via the nose-to-brain route. First sections describe the pathophysiology and the currently available pharmacological treatment for acute migraine, followed by an outline of the mechanisms underlying the nose-to-brain route. Afterwards, the main features of SLN and NLC and the most recent in vivo studies investigating the use of these nanoparticles for the treatment of acute migraine are presented.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510892/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信