{"title":"In Vitro Development of Local Antiviral Formulations with Potent Virucidal Activity Against SARS-CoV-2 and Influenza Viruses.","authors":"Juthaporn Ponphaiboon, Wantanwa Krongrawa, Sontaya Limmatvapirat, Sukannika Tubtimsri, Akanitt Jittmittraphap, Pornsawan Leaungwutiwong, Chulabhorn Mahidol, Somsak Ruchirawat, Prasat Kittakoop, Chutima Limmatvapirat","doi":"10.3390/pharmaceutics17030349","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Object:</b> This study investigates the in vitro antiviral potential of D-limonene (DLM), monolaurin (ML), and cetylpyridinium chloride (CPC) in formulations targeting SARS-CoV-2 and influenza viruses. The aim was to develop oral and nasal formulations with optimized concentrations of these active ingredients to evaluate their efficacy, safety, and stability. <b>Methods:</b> Oral (formulation D) and nasal (formulation E) products were developed using specific concentrations of DLM (0.2-0.3% <i>w</i>/<i>w</i>), ML (0.1-0.2% <i>w</i>/<i>w</i>), and CPC (0.05-0.075% <i>w</i>/<i>w</i>). In vitro virucidal activity assays were conducted to assess the antiviral efficacy of the formulations against SARS-CoV-2 and influenza viruses. Stability testing was also performed under various storage conditions. <b>Results:</b> Formulation D (0.3% <i>w</i>/<i>w</i> DLM, 0.2% <i>w</i>/<i>w</i> ML, 0.05% <i>w</i>/<i>w</i> CPC, and 1.5% <i>w</i>/<i>w</i> Cremophor RH40) demonstrated a 3.875 ± 0.1021 log reduction and 99.99 ± 0.0032% efficacy against SARS-CoV-2 within 120 s. Formulation E (0.2% <i>w</i>/<i>w</i> DLM, 0.05% <i>w</i>/<i>w</i> CPC, and 0.75% <i>w</i>/<i>w</i> Cremophor RH40) showed a 2.9063 ± 0.1197 log reduction and 99.87 ± 0.0369% efficacy against SARS-CoV-2. Both formulations achieved >99.99% efficacy and log reductions exceeding 4.000 against various influenza strains. Stability testing confirmed optimal performance at 4 °C with no microbial contamination. <b>Conclusions:</b> The findings suggest that both formulations exhibit broad-spectrum antiviral activity against SARS-CoV-2 and influenza viruses in vitro. These results support their potential for further clinical evaluations and therapeutic applications, particularly in oral and nasal spray formulations.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945346/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17030349","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Object: This study investigates the in vitro antiviral potential of D-limonene (DLM), monolaurin (ML), and cetylpyridinium chloride (CPC) in formulations targeting SARS-CoV-2 and influenza viruses. The aim was to develop oral and nasal formulations with optimized concentrations of these active ingredients to evaluate their efficacy, safety, and stability. Methods: Oral (formulation D) and nasal (formulation E) products were developed using specific concentrations of DLM (0.2-0.3% w/w), ML (0.1-0.2% w/w), and CPC (0.05-0.075% w/w). In vitro virucidal activity assays were conducted to assess the antiviral efficacy of the formulations against SARS-CoV-2 and influenza viruses. Stability testing was also performed under various storage conditions. Results: Formulation D (0.3% w/w DLM, 0.2% w/w ML, 0.05% w/w CPC, and 1.5% w/w Cremophor RH40) demonstrated a 3.875 ± 0.1021 log reduction and 99.99 ± 0.0032% efficacy against SARS-CoV-2 within 120 s. Formulation E (0.2% w/w DLM, 0.05% w/w CPC, and 0.75% w/w Cremophor RH40) showed a 2.9063 ± 0.1197 log reduction and 99.87 ± 0.0369% efficacy against SARS-CoV-2. Both formulations achieved >99.99% efficacy and log reductions exceeding 4.000 against various influenza strains. Stability testing confirmed optimal performance at 4 °C with no microbial contamination. Conclusions: The findings suggest that both formulations exhibit broad-spectrum antiviral activity against SARS-CoV-2 and influenza viruses in vitro. These results support their potential for further clinical evaluations and therapeutic applications, particularly in oral and nasal spray formulations.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.