基于硫酸软骨素的伊马替尼纳米颗粒靶向活化的肝星状细胞抗肝纤维化。

IF 4.9 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Xunzhi Liu, Changlong Fang, Hongling Yu, Lu Huang, Jiaxing Feng, Shiqin Luo, Li Song, Mengying Wu, Yulu Tan, Jianxia Dong, Tao Gong, Peihong Xiao
{"title":"基于硫酸软骨素的伊马替尼纳米颗粒靶向活化的肝星状细胞抗肝纤维化。","authors":"Xunzhi Liu, Changlong Fang, Hongling Yu, Lu Huang, Jiaxing Feng, Shiqin Luo, Li Song, Mengying Wu, Yulu Tan, Jianxia Dong, Tao Gong, Peihong Xiao","doi":"10.3390/pharmaceutics17030351","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Activated hepatic stellate cells (aHSCs) play a significant role during the onset of hepatic fibrosis, ultimately leading to excessive deposition of extracellular matrix (ECM) and other typical pathological features, and thus have become a popular target for the treatment of hepatic fibrosis. However, current aHSC-centric therapy strategies achieve unsatisfactory results, mainly due to the lack of approved anti-fibrosis drugs and sufficiently efficient aHSC-targeted delivery systems. In this study, our aim was to develop an Imatinib-loaded nanoparticle delivery system based on a chondroitin sulfate derivative to enhance aHSC targeting efficiency, improve the therapeutic effect for hepatic fibrosis, and investigate the underlying mechanism. <b>Methods</b>: The carboxyl group of chondroitin sulfate and the amino group of 1-hexadecylamine were linked by an amide bond in this study to produce the amphiphilic carrier CS-HDA. Then, the Imatinib-loaded nanoparticles (IM-CS NPs) were designed to efficiently target aHSCs through CD44-mediated endocytosis and effectively inhibit HSC overactivation via PDGF and TGF-β signaling pathways. <b>Results</b>: Both in vitro cellular uptake experiments and in vivo distribution experiments demonstrated that CS-HDA-modified nanoparticles (IM-CS NPs) exhibited a better targeting ability for aHSCs, which were subsequently utilized to treat carbon tetrachloride-induced hepatic fibrosis mouse models. Finally, significant fibrosis resolution was observed in the carbon tetrachloride-induced hepatic fibrosis mouse models after tail vein injection of the IM-CS NPs, along with their outstanding biocompatibility and biological safety. <b>Conclusions</b>: IM-loaded NPs based on an amphiphilic CS derivative have remarkable antifibrotic effects, providing a promising avenue for the clinical treatment of advanced hepatic fibrosis.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944399/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chondroitin Sulfate-Based Imatinib Nanoparticles Targeting Activated Hepatic Stellate Cells Against Hepatic Fibrosis.\",\"authors\":\"Xunzhi Liu, Changlong Fang, Hongling Yu, Lu Huang, Jiaxing Feng, Shiqin Luo, Li Song, Mengying Wu, Yulu Tan, Jianxia Dong, Tao Gong, Peihong Xiao\",\"doi\":\"10.3390/pharmaceutics17030351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background</b>: Activated hepatic stellate cells (aHSCs) play a significant role during the onset of hepatic fibrosis, ultimately leading to excessive deposition of extracellular matrix (ECM) and other typical pathological features, and thus have become a popular target for the treatment of hepatic fibrosis. However, current aHSC-centric therapy strategies achieve unsatisfactory results, mainly due to the lack of approved anti-fibrosis drugs and sufficiently efficient aHSC-targeted delivery systems. In this study, our aim was to develop an Imatinib-loaded nanoparticle delivery system based on a chondroitin sulfate derivative to enhance aHSC targeting efficiency, improve the therapeutic effect for hepatic fibrosis, and investigate the underlying mechanism. <b>Methods</b>: The carboxyl group of chondroitin sulfate and the amino group of 1-hexadecylamine were linked by an amide bond in this study to produce the amphiphilic carrier CS-HDA. Then, the Imatinib-loaded nanoparticles (IM-CS NPs) were designed to efficiently target aHSCs through CD44-mediated endocytosis and effectively inhibit HSC overactivation via PDGF and TGF-β signaling pathways. <b>Results</b>: Both in vitro cellular uptake experiments and in vivo distribution experiments demonstrated that CS-HDA-modified nanoparticles (IM-CS NPs) exhibited a better targeting ability for aHSCs, which were subsequently utilized to treat carbon tetrachloride-induced hepatic fibrosis mouse models. Finally, significant fibrosis resolution was observed in the carbon tetrachloride-induced hepatic fibrosis mouse models after tail vein injection of the IM-CS NPs, along with their outstanding biocompatibility and biological safety. <b>Conclusions</b>: IM-loaded NPs based on an amphiphilic CS derivative have remarkable antifibrotic effects, providing a promising avenue for the clinical treatment of advanced hepatic fibrosis.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944399/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics17030351\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17030351","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景:活化的肝星状细胞(aHSCs)在肝纤维化发病过程中发挥重要作用,最终导致细胞外基质(ECM)过度沉积等典型病理特征,成为肝纤维化治疗的热门靶点。然而,目前以ahsc为中心的治疗策略取得了令人不满意的结果,这主要是由于缺乏批准的抗纤维化药物和足够有效的ahsc靶向递送系统。在本研究中,我们的目的是开发一种基于硫酸软骨素衍生物的负载伊马替尼的纳米颗粒递送系统,以提高aHSC靶向效率,提高肝纤维化的治疗效果,并探讨其潜在机制。方法:将硫酸软骨素的羧基与1-十六胺的氨基通过酰胺键连接,生成两亲性载体CS-HDA。然后,设计了负载伊马替尼的纳米颗粒(IM-CS NPs),通过cd44介导的内吞作用有效靶向aHSCs,并通过PDGF和TGF-β信号通路有效抑制HSC的过度激活。结果:体外细胞摄取实验和体内分布实验均表明,cs - hda修饰纳米颗粒(IM-CS NPs)对aHSCs具有更好的靶向能力,随后将其用于治疗四氯化碳诱导的肝纤维化小鼠模型。最后,在四氯化碳诱导的肝纤维化小鼠模型中,尾静脉注射IM-CS NPs后,观察到明显的纤维化消退,并且具有出色的生物相容性和生物安全性。结论:基于两亲性CS衍生物的im负载NPs具有显著的抗纤维化作用,为临床治疗晚期肝纤维化提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chondroitin Sulfate-Based Imatinib Nanoparticles Targeting Activated Hepatic Stellate Cells Against Hepatic Fibrosis.

Background: Activated hepatic stellate cells (aHSCs) play a significant role during the onset of hepatic fibrosis, ultimately leading to excessive deposition of extracellular matrix (ECM) and other typical pathological features, and thus have become a popular target for the treatment of hepatic fibrosis. However, current aHSC-centric therapy strategies achieve unsatisfactory results, mainly due to the lack of approved anti-fibrosis drugs and sufficiently efficient aHSC-targeted delivery systems. In this study, our aim was to develop an Imatinib-loaded nanoparticle delivery system based on a chondroitin sulfate derivative to enhance aHSC targeting efficiency, improve the therapeutic effect for hepatic fibrosis, and investigate the underlying mechanism. Methods: The carboxyl group of chondroitin sulfate and the amino group of 1-hexadecylamine were linked by an amide bond in this study to produce the amphiphilic carrier CS-HDA. Then, the Imatinib-loaded nanoparticles (IM-CS NPs) were designed to efficiently target aHSCs through CD44-mediated endocytosis and effectively inhibit HSC overactivation via PDGF and TGF-β signaling pathways. Results: Both in vitro cellular uptake experiments and in vivo distribution experiments demonstrated that CS-HDA-modified nanoparticles (IM-CS NPs) exhibited a better targeting ability for aHSCs, which were subsequently utilized to treat carbon tetrachloride-induced hepatic fibrosis mouse models. Finally, significant fibrosis resolution was observed in the carbon tetrachloride-induced hepatic fibrosis mouse models after tail vein injection of the IM-CS NPs, along with their outstanding biocompatibility and biological safety. Conclusions: IM-loaded NPs based on an amphiphilic CS derivative have remarkable antifibrotic effects, providing a promising avenue for the clinical treatment of advanced hepatic fibrosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutics
Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍: Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications,  and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信