{"title":"Mission-oriented innovation for sustainable polymers in liquid formulation.","authors":"Anju Massey-Brooker, Rowan Conway","doi":"10.1098/rsta.2023.0272","DOIUrl":"10.1098/rsta.2023.0272","url":null,"abstract":"<p><p>Industrial chemical producers and formulators are increasingly conscious of their responsibility in stewarding planetary resources and minimizing harm to the environment. In 2019, the Royal Society of Chemistry (RSC) engaged an industry task force from across the value chain to drive technical research to classify a new class of polymer-polymers in liquid formulation (PLFs). Building on this, the task force called for step change in sustainability practices for PLFs and instigated a design and development process to identify research themes and priorities that could accelerate innovation in this area. However, a key challenge was that as a novel classification, PLFs were largely unknown outside the chemistry community and entirely absent from the mainstream research agenda. To establish the demand-pull requirements of the value chain for sustainable PLFs, the RSC used a 'mission-oriented' innovation framework to enable the taskforce to co-design an ideal-type portfolio of research and innovation projects, and to set out a realistic roadmap for transition. This perspective article presents a summary of the activities carried out by the task force in its pursuit of mission-oriented innovation for PLFs and describes the strategic design method used to enable cross-value chain consensus on action for PLF sustainability, build system-wide innovation ecosystems and explore common-good scenarios. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2282","pages":"20230272"},"PeriodicalIF":4.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth Rowsell, Felicity Massingberd-Mundy, Andy Walker, Mark Linthwaite, Zinovia Skoufa, Andrew Coe, Stephen Shapcott, James Paterson
{"title":"The importance of both catalyst and process design in unlocking sustainable carbon feedstocks through syngas.","authors":"Elizabeth Rowsell, Felicity Massingberd-Mundy, Andy Walker, Mark Linthwaite, Zinovia Skoufa, Andrew Coe, Stephen Shapcott, James Paterson","doi":"10.1098/rsta.2023.0265","DOIUrl":"https://doi.org/10.1098/rsta.2023.0265","url":null,"abstract":"<p><p>As part of its move towards net zero, the chemical industry, over time, will transition away from fossil-based chemical feedstocks towards more sustainable, 'green' carbon-biomass, recycled waste and captured carbon dioxide. One gateway to transforming these feedstocks into the vital chemicals and fuels society relies on is via synthesis gas or 'syngas'-a gaseous mixture of chemical building blocks (H<sub>2</sub>, CO and CO<sub>2</sub>). While today the majority of syngas is produced via steam reforming of natural gas, commercially available technologies are enabling syngas production and transformation from sustainable feedstocks. The optimization of sustainable syngas technologies would not be possible without the integrated development of both catalyst and process technology and the associated skills in chemistry and chemical engineering. This paper covers three example technologies that are unlocking the role of syngas as a gateway to sustainable fuels and chemicals and highlights the innovative developments in catalyst and process design that have enabled their optimization and commercialization. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2282","pages":"20230265"},"PeriodicalIF":4.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J M Londono Monsalve, E Kovalska, M F Craciun, M R Marsico
{"title":"Graphene nanoplatelets on recycled rubber: an experimental study of material properties and mechanical improvements.","authors":"J M Londono Monsalve, E Kovalska, M F Craciun, M R Marsico","doi":"10.1098/rsta.2023.0324","DOIUrl":"10.1098/rsta.2023.0324","url":null,"abstract":"<p><p>This study presents an experimental investigation of the mechanical behaviour of recycled rubber pads coated with graphene nanoplatelets. The investigation is part of an effort to develop a novel rubber-based composite that aims to reroute rubber from end-of-life tyres from illegal landfills and incineration back into the market in the form of a novel composite for vibration isolation. Graphene nanoplatelets were deposited on rubber pads via ultrasonic spray coating. The pads were made of a combination of recycled rubber (from tyres) and virgin rubber. A comprehensive analysis of the structural and chemical properties of the graphene coating, ensuring its integrity on the rubber substrate, was performed by combining surface topography, Raman and Fourier-transform infrared (FTIR) spectroscopy. Stacked coated pads were cured and tested dynamically in compression and shear under cyclic loading. Results showed promising improvements in the mechanical properties, in particular, in compressive stiffness and damping of the coated specimens with respect to their uncoated counterparts, laying the foundation for using graphene-enhanced recycled rubber as a novel composite.This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2281","pages":"20230324"},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Infrasound associated with the eruption of the Hunga volcano.","authors":"Quan Guo, Xinxin Jin, Guanwen Sun, Yuxin Zhang, Hanyin Cui, Xiujuan Feng","doi":"10.1098/rsta.2023.0319","DOIUrl":"https://doi.org/10.1098/rsta.2023.0319","url":null,"abstract":"<p><p>On 13-15 January 2022, the Hunga Tonga-Hunga Ha'apai underwater volcano erupted. This powerful eruption generated infrasonic waves with amplitudes of thousands of Pascals in the near field. The ground infrasonic stations in China, located approximately 10 000 km from the Hunga volcano, also received waves with frequencies from 0.01 to 0.05 Hz. However, the amplitude reached 17 Pa, which is higher than the predicted amplitude using the absorption model without considering the dispersion effect in the thin thermosphere. At high altitudes, dispersion exists and the sound speed depends on the ratio of the molecular mean collision ratio to sound frequency, which is proportional to the ratio (frequency/pressure). And attenuation coefficients are complex to model. We simulate dispersive sound speeds and attenuation coefficients at different frequencies according to theory and our experimental data. In the thermosphere, the dispersion effect causes noticeable changes of sound speed and then affects wave propagation paths in the far field. The abnormal attenuation coefficient has a smaller impact on thermospheric returns than that of the dispersive sound speed, but it is also not negligible. It explains the large amplitude of thermospheric signals received in our infrasound stations. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2281","pages":"20230319"},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring a cost-effective and straightforward mechanism for uninterrupted <i>in situ</i> maximum wave runup measurements.","authors":"Deborah Villarroel-Lamb, Richard R Simons","doi":"10.1098/rsta.2024.0182","DOIUrl":"https://doi.org/10.1098/rsta.2024.0182","url":null,"abstract":"<p><p>Wave runup, the excess water level above mean sea level, has been measured using different techniques with varying degrees of precision and associated practical limitations. This critical parameter, typically included in coastal assessment studies, varies temporally and spatially and depends on variables that include beach characteristics and nearshore hydrodynamics. Access to continuous datasets, using efficient mechanisms can assist resource-limited regions, such as Caribbean small-island developing states (SIDS), in overcoming coastal resilience obstacles. Experiments were conducted at University College London (UCL) and the University of the West Indies (UWI), which were designed to explore the temporal behaviour of the water surface within the bed during runup events. The experiments encompassed linear waves impacting a static porous bed (UCL) and a moveable granular beach (UWI), with pressure sensors buried at the base of each beach. The analyses showed that the averaged values of the time-varying water elevations within the bed, when spatially presented, produced a quadratic or cubic polynomial fit, where the curves' stationary points were accurate indicators of the location of the maximum runup position at the surface of the bed. In this way, an arrangement of buried pressure sensors can be used as an efficient means to accurately produce a continuous time series of maximum runup positions.This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2281","pages":"20240182"},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanostructured NiS<sub>2</sub>-based flexible smart sensors for human respiration monitoring.","authors":"Trishala R Desai, Aashi Gupta, Chitra Gurnani","doi":"10.1098/rsta.2023.0323","DOIUrl":"https://doi.org/10.1098/rsta.2023.0323","url":null,"abstract":"<p><p>The growing demand for wearable healthcare devices has led to an urgent need for cost-effective, wireless and portable breath monitoring systems. However, it is essential to explore novel nanomaterials that combine state-of-the-art flexible sensors with high performance and sensing capabilities along with scalability and industrially acceptable processing. In this study, we demonstrate a highly efficient NiS<sub>2</sub>-based flexible capacitive sensor fabricated via a solution-processible route using a novel single-source precursor [Ni{S<sub>2</sub>P(OPr)<sub>2</sub>}<sub>2</sub>]. The developed sensor could precisely detect the human respiration rate and exhibit rapid responsiveness, exceptional sensitivity and selectivity at ambient temperatures, with an ultra-fast response and recovery. The device effectively differentiates the exhaled breath patterns including slow, fast, oral and nasal breath, as well as post-exercise breath rates. Moreover, the sensor shows outstanding bending stability, repeatability, reliable and robust sensing performance and is capable of contactless sensing. The sensor was further employed with a user-friendly wireless interface to facilitate smartphone-enabled real-time breath monitoring systems. This work opens up numerous avenues for cost-effective, sustainable and versatile sensors with potential applications for Internet of Things-based flexible and wearable electronics.This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2281","pages":"20230323"},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding the effect of adsorption sites of CO at cobalt surface on its reactivity with H<sub>2</sub>/H by DFT calculations.","authors":"Xiaoli Zhang, Jiuzheng Yin, Lidong Zhang, Lixia Wei","doi":"10.1098/rsta.2023.0325","DOIUrl":"https://doi.org/10.1098/rsta.2023.0325","url":null,"abstract":"<p><p>Cobalt (Co) is widely used in Fischer-Tropsch synthesis (FTS), converting synthesis gas, carbon monoxide + hydrogen (CO + H<sub>2</sub>), to long-chain hydrocarbons. The adsorption of CO on the Co surface is the key step in FTS. In this work, the effect of CO adsorption sites on the reactions between CO and H<sub>2</sub> was investigated by using density functional theory (DFT). The energetics and structures of the reactions between the adsorbed CO (CO*) and H<sub>2</sub>/adsorbed H<sub>2</sub> (H<sub>2</sub>*)/adsorbed H atom (H*) were calculated. The results show that the reaction between CO* and H<sub>2</sub> is initiated by the molecular adsorption of H<sub>2</sub> on the Co surface. The reactions between CO* and H<sub>2</sub>*/H* are influenced by CO adsorption sites. For the reaction system of CO* + H<sub>2</sub>*, it has the lowest reaction barrier when CO is adsorbed at the hcp site, while for CO* + H*, it has the lowest reaction barrier when CO is adsorbed on the top site. Kinetic analysis indicates that to improve the reactivity of CO + H<sub>2</sub> in FTS, the adsorption of CO should be controlled to favour the top and bridge sites. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2281","pages":"20230325"},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential of coupled array harvester in enhanced energy harvesting.","authors":"Srimanta Lal De, Shaikh Faruque Ali","doi":"10.1098/rsta.2023.0318","DOIUrl":"https://doi.org/10.1098/rsta.2023.0318","url":null,"abstract":"<p><p>Harvesting energy from nonlinear systems has been at the centre of research in the energy harvesting community. Many such proposed systems are single nonlinear harvester. While these systems show an increase in bandwidth of harvesting frequency, overall, they are not effective enough in power generation. This article studies power harvesting and frequency bandwidth characteristics of an array of harvesters. Multiple harvesters are considered with linear and nonlinear coupling between the harvesters. The phenomena of internal resonance (IR) and stochastic resonance (SR) are reported. The IR in multiple coupled nonlinear harvesters is explored using multiple-scale analysis. A parametric study is conducted to demonstrate the effect of coupling strength, frequency mistuning, innate nonlinearity and other parameters. The parametric study helped establish effective ways to increase bandwidth. Moreover, a stochastically loaded linearly coupled bistable harvester array is numerically analysed to find the effect of coupling strength and array size on the phenomenon of SR and on the system's harvesting performance. Through these studies, the potential of multiple coupled nonlinear harvesters in enhanced energy harvesting is demonstrated under both harmonic and stochastic excitation.This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2281","pages":"20230318"},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Celebrating the 15th anniversary of the Royal Society Newton International Fellowship.","authors":"Leonette Annan","doi":"10.1098/rsta.2023.0326","DOIUrl":"10.1098/rsta.2023.0326","url":null,"abstract":"","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2281","pages":"20230326"},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416810/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drifting plasmons in two-dimensional electron channels: circuit analogy.","authors":"O Sydoruk","doi":"10.1098/rsta.2023.0312","DOIUrl":"https://doi.org/10.1098/rsta.2023.0312","url":null,"abstract":"<p><p>Plasmons in two-dimensional electron channels have potential applications in the terahertz frequency range. Equivalent circuit models provide a convenient framework for analysing the plasmons. This article introduces a circuit model for plasmons in the presence of a dc current that flows in a gated channel. It is shown that drifting plasmons can be described by an <i>LC</i>-transmission line with distributed dependent sources. A circuit analogue of the Dyakonov-Shur instability is demonstrated. Then, a lumped-element transmission line with dependent sources is analysed, and non-reciprocity is demonstrated for examples of a right- and a left-handed transmission line. Effects of ohmic loss are discussed. The results could be used for the design of non-reciprocal transmission line devices. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2281","pages":"20230312"},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}