Therese Encrenaz, Bruno Sicardy, Françoise Roques, Athena Coustenis
{"title":"利用地球掩星进行大气探测。","authors":"Therese Encrenaz, Bruno Sicardy, Françoise Roques, Athena Coustenis","doi":"10.1098/rsta.2024.0195","DOIUrl":null,"url":null,"abstract":"<p><p>The observation of Earth-based stellar occultations by solar system planets and satellites has been used for decades to retrieve information on the physical properties of their atmospheres. From the variations of the stellar flux during ingress and egress and, in some favourable cases, from the central flash, one can infer the vertical density, pressure and temperature profiles around the half-light level (typically in the range of a few μbars), as well as zonal wind regimes and the presence of hazes. Earth-based occultations have been successfully applied to all planets and satellites surrounded by an atmosphere, and have delivered unique and significant information that are often complementary to the results obtained by planetary space missions. The great improvement of the stellar catalogues provided by the Gaia astrometric space mission has drastically enlarged the capabilities of the stellar occultation method, which appears especially promising for probing the tenuous atmospheres of distant objects of the solar system.This article is part of the theme issue 'Major advances in planetary sciences thanks to stellar occultations'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2291","pages":"20240195"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atmospheric sounding using Earth-based occultations.\",\"authors\":\"Therese Encrenaz, Bruno Sicardy, Françoise Roques, Athena Coustenis\",\"doi\":\"10.1098/rsta.2024.0195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The observation of Earth-based stellar occultations by solar system planets and satellites has been used for decades to retrieve information on the physical properties of their atmospheres. From the variations of the stellar flux during ingress and egress and, in some favourable cases, from the central flash, one can infer the vertical density, pressure and temperature profiles around the half-light level (typically in the range of a few μbars), as well as zonal wind regimes and the presence of hazes. Earth-based occultations have been successfully applied to all planets and satellites surrounded by an atmosphere, and have delivered unique and significant information that are often complementary to the results obtained by planetary space missions. The great improvement of the stellar catalogues provided by the Gaia astrometric space mission has drastically enlarged the capabilities of the stellar occultation method, which appears especially promising for probing the tenuous atmospheres of distant objects of the solar system.This article is part of the theme issue 'Major advances in planetary sciences thanks to stellar occultations'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"383 2291\",\"pages\":\"20240195\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0195\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0195","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Atmospheric sounding using Earth-based occultations.
The observation of Earth-based stellar occultations by solar system planets and satellites has been used for decades to retrieve information on the physical properties of their atmospheres. From the variations of the stellar flux during ingress and egress and, in some favourable cases, from the central flash, one can infer the vertical density, pressure and temperature profiles around the half-light level (typically in the range of a few μbars), as well as zonal wind regimes and the presence of hazes. Earth-based occultations have been successfully applied to all planets and satellites surrounded by an atmosphere, and have delivered unique and significant information that are often complementary to the results obtained by planetary space missions. The great improvement of the stellar catalogues provided by the Gaia astrometric space mission has drastically enlarged the capabilities of the stellar occultation method, which appears especially promising for probing the tenuous atmospheres of distant objects of the solar system.This article is part of the theme issue 'Major advances in planetary sciences thanks to stellar occultations'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.