Yi-cheng Wang , Xiao-bo Ma , Ayeza , Chen-xu Wang , Yang Li , Cheng-long Yang , Zhe-fan Wang , Chao Wang , Chao Hu , Ya-ting Zhang
{"title":"A review of carbon-supported single-atom catalysts for electrochemical reactions","authors":"Yi-cheng Wang , Xiao-bo Ma , Ayeza , Chen-xu Wang , Yang Li , Cheng-long Yang , Zhe-fan Wang , Chao Wang , Chao Hu , Ya-ting Zhang","doi":"10.1016/S1872-5805(24)60863-2","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60863-2","url":null,"abstract":"<div><p>Recent advances in the use of carbon-supported single-atom catalysts (SACs) for electrochemical reactions are comprehensively reviewed. The development and advantages of carbon-supported SACs are briefly introduced, followed by a detailed summary of the synthesis strategies used, including vapor phase transport, high temperature pyrolysis and wet chemical methods. Advanced characterization techniques for carbon-supported SACs are also reviewed. The use of carbon-supported SACs in different fields, such as the oxygen reduction reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, hydrogen evolution reaction, and oxygen evolution reaction are summarized. Special emphasis is given to the modification strategies used to enable carbon-supported SACs to have an excellent electrocatalytic performance. Finally, the prospects and challenges associated with using carbon-supported SACs for electrochemical reactions are discussed.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 407-438"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ya-ping Lu , Hong-xing Wang , Lan-tao Liu , Wei-wei Pang , Xiao-hong Chen
{"title":"Boron and nitrogen co-doped sodium alginate-based porous carbons for durable and fast Zn-ion hybrid capacitors","authors":"Ya-ping Lu , Hong-xing Wang , Lan-tao Liu , Wei-wei Pang , Xiao-hong Chen","doi":"10.1016/S1872-5805(24)60847-4","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60847-4","url":null,"abstract":"<div><p>In recent years, zinc-ion hybrid capacitors (ZIHCs) have attracted increasing attention due to their environmental friendliness and excellent electrochemical properties. However, their performance is mainly limited by the electrochemical performance of the cathode, so it is necessary to develop an advanced cathode material. N, B co-doped sodium alginate-based porous carbon (NBSPC) was prepared by one-step co-carbonization using sodium alginate as the matrix and NH<sub>4</sub>B<sub>5</sub>O<sub>8</sub> as the N and B source. This N, B co-doping strategy improves the pore structure of the carbon materials and increases the number of surface functional groups, greatly improving the capacitive behavior of the raw materials and thus improving their electrochemical performance. When used as the cathode in ZIHCs, the NBSPC had an excellent rate performance (85.4 mAh g<sup>−1</sup> even at ultra-high current density of 40 A g<sup>−1</sup>) and good cycling stability (15 000 cycles at 20 A g<sup>−1</sup> with a capacity retention rate of 94.5%).</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 506-514"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sahil Rana , Amit Kumar , Tong-tong Wang , Gaurav Sharma , Pooja Dhiman , Alberto García-Penas
{"title":"A review of carbon material-based Z-scheme and S-scheme heterojunctions for photocatalytic clean energy generation","authors":"Sahil Rana , Amit Kumar , Tong-tong Wang , Gaurav Sharma , Pooja Dhiman , Alberto García-Penas","doi":"10.1016/S1872-5805(24)60857-7","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60857-7","url":null,"abstract":"<div><p>Carbon materials, including carbon nanotubes/nanofibers, graphene, graphene oxide, reduced graphene oxide, graphyne, graphdiyne, carbon quantum dots and fullerenes, have received considerable attention in recent years because of their unique properties such as high conductivity, excellent stability and biocompatibility. The integration of these materials into Z-scheme and S-scheme heterojunctions has emerged as a transformative strategy to increase their photocatalytic efficiency for energy conversion applications. We first consider the fundamental principles of clean energy generation such as photocatalytic H<sub>2</sub> generation and CO<sub>2</sub> reduction, elucidating their respective mechanisms and advantages. Various types of carbon materials, their synthesis and construction of Z-scheme and S-scheme heterojunctions are then discussed, emphasizing their role in promoting charge separation, reducing recombination losses and extending the spectral response range. With a focus on solar energy production, recent advances in carbon-based Z-scheme and S-scheme heterojunctions are discussed and summarized for photocatalytic H<sub>2</sub> generation and CO<sub>2</sub> reduction. Lastly, the current problems in the field of carbon-based photocatalysts are discussed with insights for the future development of this field.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 458-482"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui-min Liu , Xiao-yu Luan , Jia-yu Yan , Fan-le Bu , Yu-rui Xue , Yu-liang Li
{"title":"Controlled growth of a graphdiyne/cobalt hydroxide heterointerface for efficient chlorine production","authors":"Hui-min Liu , Xiao-yu Luan , Jia-yu Yan , Fan-le Bu , Yu-rui Xue , Yu-liang Li","doi":"10.1016/S1872-5805(24)60861-9","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60861-9","url":null,"abstract":"<div><p>The chlor-alkali process plays a key and irreplaceable role in the chemical industry because of its use in various industrial processes. However, the low selectivity and efficiency of the reported chlorine evolution reaction (CER) electrocatalysts obviously hinder its practical use. We report a simple method for the controlled growth of high-performance CER electrocatalysts by first growing cobalt hydroxide on the surface of carbon cloth, followed by the <em>in-situ</em> growth of graphdiyne (GDY/Co(OH)<sub>2</sub>). As expected, the as-synthesized catalyst has a small overpotential of only 83 mV at 10 mA cm<sup>−2</sup>, a maximum Faradaic Efficiency (FE) of 91.54%, and a high chlorine yield of 157.11 mg h<sup>−1</sup> cm<sup>−2</sup> in acidic simulated seawater. Experimental results demonstrate that the in-situ growth of GDY on the Co(OH)<sub>2</sub> surface leads to the formation of heterointerfaces with strong electron transfer between GDY and Co atoms, resulting in a higher conductivity, larger active specific surface area and more active sites, thereby improving the overall electrocatalytic selectivity and efficiency.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 515-525"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue Wang , Jia-liang Luo , Zhe-hong Lu , Jun Di , Su-wei Wang , Wei Jiang
{"title":"A review of the high-concentration processing, densification, and applications of graphene oxide and graphene","authors":"Yue Wang , Jia-liang Luo , Zhe-hong Lu , Jun Di , Su-wei Wang , Wei Jiang","doi":"10.1016/S1872-5805(24)60856-5","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60856-5","url":null,"abstract":"<div><p>Dense graphene assemblies, composed of tightly stacked graphene sheets, have outstanding chemical stability and excellent mechanical, thermal, and electrical properties. They also do not have the problems of low density, low mechanical strength, poor electrical conductivity, or poor thermal conductivity found in porous graphene aerogels, making them ideal materials for future portable electronic and smart devices. We summarize work on high-concentration graphene oxide (GO) and graphene dispersions prepared by mechanical dispersion, evaporation concentration, centrifugal concentration, and liquid phase exfoliation, as well as two-dimensional (2D) dense graphene-based films and three-dimensional (3D) dense graphene-based structures prepared by vacuum-assisted filtration, interfacial self-assembly, and press-forming, and evaluate the advantages and disadvantages of each method. The applications of dense graphene-based assemblies in energy storage, thermal management, and electromagnetic interference (EMI) shielding are summarized. Finally, their challenges and prospects in future research are outlined. This review provides a reference for exploring and developing their large-scale, cost-effective manufacture and use.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 483-505"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review of the use of graphene-based materials in electromagnetic-shielding","authors":"Shang-juan Yang, Yun Cao, Yan-bing He, Wei Lv","doi":"10.1016/S1872-5805(24)60840-1","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60840-1","url":null,"abstract":"<div><p>Electromagnetic radiation has led to potentially harmful effects, and thus, there has been growing research on electromagnetic shielding materials with a wide shielding range, high absorption efficiency and stability. Graphene is a prime candidate in this field due to its low density, outstanding electrical conductivity, and large specific surface area. In this paper, we conclude the fundamental principles of electromagnetic shielding and the structural characteristics of graphene-based materials while highlighting their unique electromagnetic shielding properties. We also provide an overview of common strategies for modifying graphene-based materials, including structural modification and heteroatom doping, and their incorporation in composite materials to improve this property. Structural modification can increase the losses of electromagnetic waves by absorption and multiple reflections, and heteroatom doping and incorporation in composite materials can increase the losses by interface polarization and magnetic effects. Furthermore, we summarize various modification methods for graphene-based electromagnetic shielding materials to inspire the development of materials with lightweight and high shielding bandwidth capabilities.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 2","pages":"Pages 223-239"},"PeriodicalIF":5.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140815629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new anode material for high rate and long life lithium/sodium storage","authors":"Chun-hui Zhang, Jia-yuan Zhang, Jie-yang Zhan, Jian Yu, Lin-lin Fan, An-ping Yang, Hong Liu, Guang-gang Gao","doi":"10.1016/S1872-5805(24)60845-0","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60845-0","url":null,"abstract":"<div><p>It is imperative to design suitable anode materials for both lithium-ion (LIBs) and sodium-ion batteries (SIBs) with a high-rate performance and ultralong cycling life. We fabricated a MoO<sub>2</sub>/MoS<sub>2</sub> heterostructure that was then homogeneously distributed in N,S-doped carbon nanofibers (MoO<sub>2</sub>/MoS<sub>2</sub>@NSC) by electrospinning and sulfurization. The one-dimensional carbon fiber skeleton serves as a conductive frame to decrease the diffusion pathway of Li<sup>+</sup>/Na<sup>+</sup>, while the N/S doping creates abundant active sites and significantly improves the ion diffusion kinetics. Moreover, the deposition of MoS<sub>2</sub> nanosheets on the MoO<sub>2</sub> bulk phase produces an interface that enables fast Li<sup>+</sup>/Na<sup>+</sup> transport, which is crucial for achieving high efficiency energy storage. Consequently, as the anode for LIBs, MoO<sub>2</sub>/MoS<sub>2</sub>@NSC gives an excellent cycling stability of 640 mAh g<sup>−1</sup> for 2 000 cycles under 5.0 A g<sup>−1</sup> with an ultralow average capacity drop of 0.002% per cycle and an exceptional rate capability of 614 mAh g<sup>−1</sup> at 10.0 A g<sup>−1</sup>. In SIBs, it also produces a significantly better electrochemical performance (reversible capacity of 242 mAh g<sup>−1</sup> under 2.0 A g<sup>−1</sup> for 2 000 cycles and 261 mAh g<sup>−1</sup> under 5.0 A g<sup>−1</sup>). This work shows how introducing a novel interface in the anode can produce rapid Li<sup>+</sup>/Na<sup>+</sup> storage kinetics and a long cycling performance.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 2","pages":"Pages 308-320"},"PeriodicalIF":5.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140815647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meng-ya Wang , Shi-you Li , Can-kun Gao , Xiao-qi Fan , Yin Quan , Xiao-hua Li , Chun-lei Li , Ning-shuang Zhang
{"title":"The production of electrodes for microsupercapacitors based on MoS2-modified reduced graphene aerogels by 3D printing","authors":"Meng-ya Wang , Shi-you Li , Can-kun Gao , Xiao-qi Fan , Yin Quan , Xiao-hua Li , Chun-lei Li , Ning-shuang Zhang","doi":"10.1016/S1872-5805(24)60823-1","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60823-1","url":null,"abstract":"<div><p>Micro-supercapacitors (MSCs) are of interest because of their high power density and excellent cycling performance, offering a broad array of potential applications. However, preparing electrodes for the MSCs with an extremely high areal capacitance and energy density remains a challenge. We constructed MSC electrodes with an ultra-high area capacitance and a high energy density, using reduced graphene oxide aerogel (GA) and MoS<sub>2</sub> as the active materials, combined with 3D printing and surface modification. Using 3D printing, we obtained electrodes with a stable macrostructure and a GA-crosslinked micropore structure. We also used a solution method to load the surface of the printed electrode with molybdenum disulfide nanosheets, further improving the electrochemical performance. The surface capacitance of the electrode reached 3.99 F cm<sup>−2</sup>, the power density was 194 W cm<sup>−2</sup>, and the energy density was 1 997 mWh cm<sup>−2</sup>, confirming its excellent electrochemical performance and cycling stability. This work provides a simple and efficient method for preparing MSC electrodes with a high areal capacitance and energy density, making them ideal for portable electronic devices.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 2","pages":"Pages 283-296"},"PeriodicalIF":5.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140815635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaurav Sharma , Yaksha Verma , Amit Kumar , Pooja Dhiman , Tong-tong Wang , Florian J. Stadler
{"title":"A review of graphdiyne: A new material for synthesizing effective adsorbents for aqueous contaminants","authors":"Gaurav Sharma , Yaksha Verma , Amit Kumar , Pooja Dhiman , Tong-tong Wang , Florian J. Stadler","doi":"10.1016/S1872-5805(24)60830-9","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60830-9","url":null,"abstract":"<div><p>Graphdiyne (GDY), a new two-dimensional (2D) carbon molecule, is expected to have applications in the removal of contaminants from aqueous media. It has superior conjugation, unusual and varied electronic properties, and exceptional chemical and thermal stability because of its framework of sp and sp<sup>2</sup> hybridized carbon bonds that are combined to produce benzene rings and diacetylenic bonds in a two-dimensional symmetrical network. Its molecular chemistry is the result of it having carbon-carbon triple bonds, with a regular distribution of triangular pores in its structure, which provide reaction sites and various reaction pathways. GDY is an adsorbent with an excellent efficiency for the removal of oil, organic pollutants, dyes, and metals from contaminated water, but there is limited evidence of it being used as an adsorbent in the literature. This review discusses its synthesis and its use as an adsorbent together with its prospects for pollutant removal.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 2","pages":"Pages 173-200"},"PeriodicalIF":5.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140815627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue Fang , Fu-kai Yang , Wei-li Qu , Chao Deng , Zhen-bo Wang
{"title":"N-doped hollow carbon nanospheres embedded in N-doped graphene loaded with palladium nanoparticles as an efficient electrocatalyst for formic acid oxidation","authors":"Yue Fang , Fu-kai Yang , Wei-li Qu , Chao Deng , Zhen-bo Wang","doi":"10.1016/S1872-5805(24)60844-9","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60844-9","url":null,"abstract":"<div><p>Efficient electrocatalysts with a low cost, high activity and good durability play a crucial role in the use of direct formic acid fuel cells. Pd nanoparticles supported on N-doped hollow carbon nanospheres (NHCNs) embedded in an assembly of N-doped graphene (NG) with a three-dimensional (3D) porous structure by a simple and economical method were investigated as direct formic acid fuel cell catalysts. Because of the unique porous configuration of interconnected layers doped with nitrogen atoms, the Pd/NHCN@NG catalyst with Pd nanoparticles has a large catalytic active surface area, superior electrocatalytic activity, a high steady-state current density, and a strong resistance to CO poisoning, far surpassing those of conventional Pd/C, Pd/NG, and Pd/NHCN catalysts for formic acid electrooxidation. When the HCN/GO mass ratio was 1:1, the Pd/NHCN@NG catalyst had an outstanding performance in the catalytic oxidation of formic acid, with an activity 4.21 times that of Pd/C. This work indicates a way to produce superior carbon-based support materials for electrocatalysts, which will be beneficial for the development of fuel cells.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 2","pages":"Pages 321-333"},"PeriodicalIF":5.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140815648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}