A review of the high-concentration processing, densification, and applications of graphene oxide and graphene

IF 5.7 3区 材料科学 Q2 Materials Science
Yue Wang , Jia-liang Luo , Zhe-hong Lu , Jun Di , Su-wei Wang , Wei Jiang
{"title":"A review of the high-concentration processing, densification, and applications of graphene oxide and graphene","authors":"Yue Wang ,&nbsp;Jia-liang Luo ,&nbsp;Zhe-hong Lu ,&nbsp;Jun Di ,&nbsp;Su-wei Wang ,&nbsp;Wei Jiang","doi":"10.1016/S1872-5805(24)60856-5","DOIUrl":null,"url":null,"abstract":"<div><p>Dense graphene assemblies, composed of tightly stacked graphene sheets, have outstanding chemical stability and excellent mechanical, thermal, and electrical properties. They also do not have the problems of low density, low mechanical strength, poor electrical conductivity, or poor thermal conductivity found in porous graphene aerogels, making them ideal materials for future portable electronic and smart devices. We summarize work on high-concentration graphene oxide (GO) and graphene dispersions prepared by mechanical dispersion, evaporation concentration, centrifugal concentration, and liquid phase exfoliation, as well as two-dimensional (2D) dense graphene-based films and three-dimensional (3D) dense graphene-based structures prepared by vacuum-assisted filtration, interfacial self-assembly, and press-forming, and evaluate the advantages and disadvantages of each method. The applications of dense graphene-based assemblies in energy storage, thermal management, and electromagnetic interference (EMI) shielding are summarized. Finally, their challenges and prospects in future research are outlined. This review provides a reference for exploring and developing their large-scale, cost-effective manufacture and use.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 483-505"},"PeriodicalIF":5.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580524608565","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Dense graphene assemblies, composed of tightly stacked graphene sheets, have outstanding chemical stability and excellent mechanical, thermal, and electrical properties. They also do not have the problems of low density, low mechanical strength, poor electrical conductivity, or poor thermal conductivity found in porous graphene aerogels, making them ideal materials for future portable electronic and smart devices. We summarize work on high-concentration graphene oxide (GO) and graphene dispersions prepared by mechanical dispersion, evaporation concentration, centrifugal concentration, and liquid phase exfoliation, as well as two-dimensional (2D) dense graphene-based films and three-dimensional (3D) dense graphene-based structures prepared by vacuum-assisted filtration, interfacial self-assembly, and press-forming, and evaluate the advantages and disadvantages of each method. The applications of dense graphene-based assemblies in energy storage, thermal management, and electromagnetic interference (EMI) shielding are summarized. Finally, their challenges and prospects in future research are outlined. This review provides a reference for exploring and developing their large-scale, cost-effective manufacture and use.

氧化石墨烯和石墨烯的高浓度加工、致密化和应用综述
由紧密堆叠的石墨烯片组成的致密石墨烯组件具有出色的化学稳定性和卓越的机械、热和电气性能。它们也没有多孔石墨烯气凝胶中存在的密度低、机械强度低、导电性差或导热性差等问题,因此是未来便携式电子和智能设备的理想材料。我们总结了通过机械分散、蒸发浓缩、离心浓缩和液相剥离等方法制备的高浓度氧化石墨烯(GO)和石墨烯分散体,以及通过真空辅助过滤、界面自组装和压制成型等方法制备的二维(2D)致密石墨烯基薄膜和三维(3D)致密石墨烯基结构,并评估了每种方法的优缺点。总结了致密石墨烯基组件在能量存储、热管理和电磁干扰(EMI)屏蔽方面的应用。最后,概述了其在未来研究中面临的挑战和前景。本综述为探索和开发大规模、经济高效的石墨烯制造和使用提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信