OpticaPub Date : 2024-03-11DOI: 10.1364/optica.506108
Kyunghun Han, David A. Long, Sean M. Bresler, Junyeob Song, Yiliang Bao, Benjamin J. Reschovsky, Kartik Srinivasan, Jason J. Gorman, Vladimir A. Aksyuk, and Thomas W. LeBrun
{"title":"Low-power, agile electro-optic frequency comb spectrometer for integrated sensors","authors":"Kyunghun Han, David A. Long, Sean M. Bresler, Junyeob Song, Yiliang Bao, Benjamin J. Reschovsky, Kartik Srinivasan, Jason J. Gorman, Vladimir A. Aksyuk, and Thomas W. LeBrun","doi":"10.1364/optica.506108","DOIUrl":"https://doi.org/10.1364/optica.506108","url":null,"abstract":"Sensing platforms based upon photonic integrated circuits have shown considerable promise; however, they require corresponding advancements in integrated optical readout technologies. Here, we present an on-chip spectrometer that leverages an integrated thin-film lithium niobate modulator to produce a frequency-agile electro-optic frequency comb for interrogating chip-scale temperature and acceleration sensors. The chirped comb process allows for ultralow radiofrequency drive voltages, which are as much as seven orders of magnitude less than the lowest found in the literature and are generated using a chip-scale, microcontroller-driven direct digital synthesizer. The on-chip comb spectrometer is able to simultaneously interrogate both an on-chip temperature sensor and an off-chip, microfabricated optomechanical accelerometer with cutting-edge sensitivities of <span><span style=\"color: inherit;\"><span><span style=\"margin-left: 0.333em; margin-right: 0.333em;\">≈</span><span style=\"margin-left: -0.167em; width: 0em; height: 0em;\"></span><span><span>5</span></span><span style=\"width: 0.278em; height: 0em;\"></span><span>µ</span><span><span>K</span></span><span style=\"margin-left: 0.267em; margin-right: 0.267em;\">⋅</span><span><span><span style=\"margin-right: 0.05em;\"><span>H</span><span>z</span></span><span style=\"vertical-align: 0.5em;\"><span>−</span><span>1</span><span><span>/</span></span><span>2</span></span></span></span></span></span><script type=\"math/tex\">approx !{5};unicode{x00B5} {rm K} cdot {{rm Hz}^{- 1/2}}</script></span> and <span><span style=\"color: inherit;\"><span><span style=\"margin-left: 0.333em; margin-right: 0.333em;\">≈</span><span style=\"margin-left: -0.167em; width: 0em; height: 0em;\"></span><span><span>130</span></span><span style=\"width: 0.278em; height: 0em;\"></span><span>µ</span><span><span>m</span></span><span style=\"margin-left: 0.267em; margin-right: 0.267em;\">⋅</span><span><span><span style=\"margin-right: 0.05em;\"><span>s</span></span><span style=\"vertical-align: 0.5em;\"><span>−</span><span>2</span></span></span></span><span style=\"margin-left: 0.267em; margin-right: 0.267em;\">⋅</span><span><span><span style=\"margin-right: 0.05em;\"><span>H</span><span>z</span></span><span style=\"vertical-align: 0.5em;\"><span>−</span><span>1</span><span><span>/</span></span><span>2</span></span></span></span></span></span><script type=\"math/tex\">approx !{130};unicode{x00B5}{rm m} cdot {{rm s}^{- 2}} cdot {{rm Hz}^{- 1/2}}</script></span>, respectively. This platform is compatible with a broad range of existing photonic integrated circuit technologies, where its combination of frequency agility and ultralow radiofrequency power requirements are expected to have applications in fields such as quantum science and optical computing.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"115 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140104617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-03-08DOI: 10.1364/optica.507310
Shuai Sun, Zhen-Wu Nie, Long-Kun Du, Chen Chang, and Wei-Tao Liu
{"title":"Overcoming the diffraction limit by exploiting unmeasured scattering media","authors":"Shuai Sun, Zhen-Wu Nie, Long-Kun Du, Chen Chang, and Wei-Tao Liu","doi":"10.1364/optica.507310","DOIUrl":"https://doi.org/10.1364/optica.507310","url":null,"abstract":"Scattering is not necessarily an obstacle to imaging. It can help enhance imaging performance beyond the reach of a lens system. However, current scattering-enhanced imaging systems require prior knowledge of the transmission matrix. There are also some techniques that do not require such prior knowledge to see through strongly scattering media, but the results are still limited by the optics used. Here we propose overcoming the diffraction limit through a visually opaque diffuser. By controlling the distance between the diffuser and lens system, light with higher spatial frequencies is scattered into the entrance pupil. With the deformed wavefront corrected, we experimentally achieved imaging with <span><span>3.39 times</span><script type=\"math/tex\">3.39 times</script></span> enhancement of the Rayleigh limit. In addition, our method works well for objects that are <span><span>4 times</span><script type=\"math/tex\">4 times</script></span> larger than the memory effect range and can maintain super-resolution performance for a depth of field <span><span>6.6 times</span><script type=\"math/tex\">6.6 times</script></span> larger than a lens can achieve. Using our method, an obstructive scattering medium can enhance the throughput of the imaging system, even though the transmission matrix of the scattering medium has not been measured beforehand.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"40 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140067605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-03-08DOI: 10.1364/optica.515909
Maximilian Frenzel, Joanna M. Urban, Leona Nest, Tobias Kampfrath, Michael S. Spencer, and Sebastian F. Maehrlein
{"title":"Quartz as an accurate high-field low-cost THz helicity detector","authors":"Maximilian Frenzel, Joanna M. Urban, Leona Nest, Tobias Kampfrath, Michael S. Spencer, and Sebastian F. Maehrlein","doi":"10.1364/optica.515909","DOIUrl":"https://doi.org/10.1364/optica.515909","url":null,"abstract":"Emerging concepts employing angular momentum of THz light for ultrafast material control rely on the measurement of undistorted intense THz fields and on the precise knowledge about sophisticated THz helicity states. Here, we establish z-cut <span><span style=\"color: inherit;\"><span><span>α</span></span></span><script type=\"math/tex\">alpha</script></span>-quartz as a precise electro-optic THz detector for full amplitude, phase, and polarization measurement of highly intense THz fields, all at a fraction of costs of conventional THz detectors. We experimentally determine its detector response function, in excellent agreement with our modeling. Thereupon, we develop a swift and reliable protocol to precisely measure arbitrary THz polarization and helicity states. This two-dimensional electro-optic sampling in <span><span style=\"color: inherit;\"><span><span>α</span></span></span><script type=\"math/tex\">alpha</script></span>-quartz fosters rapid and cost-efficient THz time-domain ellipsometry and enables the characterization of polarization-tailored fields for driving chiral or other helicity-sensitive quasi-particles and topologies.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"62 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140067777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-03-08DOI: 10.1364/optica.516479
Utku Hatipoglu, Sameer Sonar, David P. Lake, Srujan Meesala, and Oskar Painter
{"title":"In situ tuning of optomechanical crystals with nano-oxidation","authors":"Utku Hatipoglu, Sameer Sonar, David P. Lake, Srujan Meesala, and Oskar Painter","doi":"10.1364/optica.516479","DOIUrl":"https://doi.org/10.1364/optica.516479","url":null,"abstract":"Optomechanical crystals are a promising device platform for quantum transduction and sensing. Precise targeting of the optical and acoustic resonance frequencies of these devices is crucial for future advances on these fronts. However, fabrication disorder in these wavelength-scale nanoscale devices typically leads to inhomogeneous resonance frequencies. Here we achieve <i>in situ</i>, selective frequency tuning of optical and acoustic resonances in silicon optomechanical crystals via electric field-induced nano-oxidation using an atomic-force microscope. Our method can achieve a tuning range <span><span style=\"color: inherit;\"><span><span style=\"width: 0.278em; height: 0em;\"></span><span><span style=\"margin-left: 0.333em; margin-right: 0.333em;\">></span></span><span><span>2</span></span><span style=\"width: 0.278em; height: 0em;\"></span><span><span>n</span><span>m</span></span></span></span><script type=\"math/tex\">; {gt} {2};{rm nm}</script></span> (0.13%) for the optical resonance wavelength in the telecom C-band, and <span><span style=\"color: inherit;\"><span><span><span style=\"margin-left: 0.333em; margin-right: 0.333em;\">></span></span><span><span>60</span></span><span style=\"width: 0.278em; height: 0em;\"></span><span><span>M</span><span>H</span><span>z</span></span></span></span><script type=\"math/tex\">{gt}{60};{rm MHz}</script></span> (1.2%) for the acoustic resonance frequency at 5 GHz. The tuning resolution of 1.1 pm for the optical wavelength and 150 kHz for the acoustic frequency allows us to spectrally align multiple optomechanical crystal resonators using a pattern generation algorithm. Our results establish a method for precise post-fabrication tuning of optomechanical crystals. This technique can enable coupled optomechanical resonator arrays, scalable resonant optomechanical circuits, and frequency matching of microwave-optical quantum transducers.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"9 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140067762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-02-28DOI: 10.1364/optica.506943
Adrian Makowski, Michał Dąbrowski, Ivan Michel Antolovic, Claudio Bruschini, Hugo Defienne, Edoardo Charbon, Radek Lapkiewicz, and Sylvain Gigan
{"title":"Large reconfigurable quantum circuits with SPAD arrays and multimode fibers","authors":"Adrian Makowski, Michał Dąbrowski, Ivan Michel Antolovic, Claudio Bruschini, Hugo Defienne, Edoardo Charbon, Radek Lapkiewicz, and Sylvain Gigan","doi":"10.1364/optica.506943","DOIUrl":"https://doi.org/10.1364/optica.506943","url":null,"abstract":"Reprogrammable integrated optics provides a natural platform for tunable quantum photonic circuits, but faces challenges when high dimensions and high connectivity are involved. Here, we implement high-dimensional linear transformations on spatial modes of photons using wavefront shaping together with mode mixing in a multimode fiber, and measure photon correlations using a time-tagging single-photon avalanche diode (SPAD) array. Our demonstration of a generalization of a Hong-Ou-Mandel interference to 22 output ports shows the scalability potential of wavefront shaping in complex media in conjunction with SPAD arrays for implementing high-dimensional reconfigurable quantum circuits. Specifically, we achieved <span><span style=\"color: inherit;\"><span><span style=\"margin-left: 0em; margin-right: 0em;\">(</span><span>80.5</span><span style=\"margin-left: 0.267em; margin-right: 0.267em;\">±</span><span>6.8</span><span style=\"margin-left: 0em; margin-right: 0em;\">)</span><span>%</span></span></span><script type=\"math/tex\">(80.5 pm 6.8)%</script></span> similarity for indistinguishable photon pairs and <span><span style=\"color: inherit;\"><span><span style=\"margin-left: 0em; margin-right: 0em;\">(</span><span>84.9</span><span style=\"margin-left: 0.267em; margin-right: 0.267em;\">±</span><span>7.0</span><span style=\"margin-left: 0em; margin-right: 0em;\">)</span><span>%</span></span></span><script type=\"math/tex\">(84.9 pm 7.0)%</script></span> similarity for distinguishable photon pairs using 22 detectors and random circuits.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"1 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140015414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-02-26DOI: 10.1364/optica.505406
Ryohei Morita, Takuya Inoue, Masahiro Yoshida, Kentaro Enoki, Menaka De Zoysa, Kenji Ishizaki, and Susumu Noda
{"title":"Demonstration of high-power photonic-crystal surface-emitting lasers with 1-kHz-class intrinsic linewidths","authors":"Ryohei Morita, Takuya Inoue, Masahiro Yoshida, Kentaro Enoki, Menaka De Zoysa, Kenji Ishizaki, and Susumu Noda","doi":"10.1364/optica.505406","DOIUrl":"https://doi.org/10.1364/optica.505406","url":null,"abstract":"Photonic-crystal surface-emitting lasers (PCSELs) are capable of single-mode, high-power lasing over a large resonator area owing to two-dimensional resonance at a singularity point of the photonic band structure. Since the number of photons in the lasing mode in PCSELs are much larger than those in conventional semiconductor lasers, PCSELs are in principle suitable for coherent operation with a narrow spectral linewidth. In this paper, we numerically and experimentally investigate intrinsic spectral linewidths of 1-mm-diameter PCSELs under continuous-wave (CW) operation, and we demonstrate CW operation with 1-kHz-class intrinsic linewidths and 5-W-class output power.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"6 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139988505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-02-22DOI: 10.1364/optica.514203
Sen Yang, Mingze He, Chuchuan Hong, Josh Nordlander, Jon-Paul Maria, Joshua D. Caldwell, and Justus C. Ndukaife
{"title":"Single-peak and narrow-band mid-infrared thermal emitters driven by mirror-coupled plasmonic quasi-BIC metasurfaces","authors":"Sen Yang, Mingze He, Chuchuan Hong, Josh Nordlander, Jon-Paul Maria, Joshua D. Caldwell, and Justus C. Ndukaife","doi":"10.1364/optica.514203","DOIUrl":"https://doi.org/10.1364/optica.514203","url":null,"abstract":"Wavelength-selective thermal emitters (WS-EMs) hold considerable appeal due to the scarcity of cost-effective, narrow-band sources in the mid-to-long-wave infrared spectrum. WS-EMs achieved via dielectric materials typically exhibit thermal emission peaks with high quality factors (<span><span>{Q}</span><script type=\"math/tex\">{Q}</script></span> factors), but their optical responses are prone to temperature fluctuations. Metallic EMs, on the other hand, show negligible drifts with temperature changes, but their <span><span>{Q}</span><script type=\"math/tex\">{Q}</script></span> factors usually hover around 10. In this study, we introduce and experimentally verify an EM grounded in plasmonic quasi-bound states in the continuum (BICs) within a mirror-coupled system. Our design numerically delivers an ultra-narrowband single peak with a <span><span>{Q}</span><script type=\"math/tex\">{Q}</script></span> factor of approximately 64 and near-unity absorptance that can be freely tuned within an expansive band of more than 10 µm. By introducing air slots symmetrically, the <span><span>{Q}</span><script type=\"math/tex\">{Q}</script></span> factor can be further augmented to around 100. Multipolar analysis and phase diagrams are presented to elucidate the operational principle. Importantly, our infrared spectral measurements affirm the remarkable resilience of our designs’ resonance frequency in the face of temperature fluctuations over 300°C. Additionally, we develop an effective impedance model based on the optical nanoantenna theory to understand how further tuning of the emission properties is achieved through precise engineering of the slot. This research thus heralds the potential of applying plasmonic quasi-BICs in designing ultra-narrowband, temperature-stable thermal emitters in the mid-infrared. Moreover, such a concept may be adaptable to other frequency ranges, such as near-infrared, terahertz, and gigahertz.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"2015 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139968959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-02-16DOI: 10.1364/optica.500780
Tengfei Wu, Marc Guillon, Gilles Tessier, and Pascal Berto
{"title":"Multiplexed wavefront sensing with a thin diffuser","authors":"Tengfei Wu, Marc Guillon, Gilles Tessier, and Pascal Berto","doi":"10.1364/optica.500780","DOIUrl":"https://doi.org/10.1364/optica.500780","url":null,"abstract":"In astronomy or biological imaging, refractive index inhomogeneities of, e.g., atmosphere or tissues, induce optical aberrations that degrade the desired information hidden behind the medium. A standard approach consists of measuring these aberrations with a wavefront sensor (e.g., Shack–Hartmann) located in the pupil plane, and compensating for them either digitally or by adaptive optics with a wavefront shaper. However, in its usual implementation this strategy can only extract aberrations within a single isoplanatic patch, i.e., a region where the aberrations remain correlated. This limitation severely reduces the effective field-of-view in which the correction can be performed. Here, we propose a wavefront sensing method capable of measuring, in a single shot, various pupil aberrations corresponding to multiple isoplanatic patches. The method, based on a thin diffuser (i.e., a random phase mask), exploits the dissimilarity between different speckle regions to multiplex several wavefronts incoming from various incidence angles. We present proof-of-concept experiments carried out in widefield fluorescence microscopy. A digital deconvolution procedure in each isoplanatic patch yields accurate aberration correction within an extended field-of-view. This approach is of interest for adaptive optics applications as well as diffractive optical tomography.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"63 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139750280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-02-07DOI: 10.1364/optica.512155
Bichen Zhang, Pai Peng, Aditya Paul, and Jeff D. Thompson
{"title":"Scaled local gate controller for optically addressed qubits","authors":"Bichen Zhang, Pai Peng, Aditya Paul, and Jeff D. Thompson","doi":"10.1364/optica.512155","DOIUrl":"https://doi.org/10.1364/optica.512155","url":null,"abstract":"Scalable classical controllers are a key component of future fault-tolerant quantum computers. Neutral atom quantum computers leverage commercially available optoelectronic devices for generating large-scale tweezer arrays and performing parallel readout, but implementing massively parallel, locally addressed gate operations is an open challenge. In this work, we demonstrate an optical modulator system based on off-the-shelf components, which can generate a two-dimensional array of over 10,000 focused spots with uniform frequency and amplitude, and switching them on and off individually in arbitrary configurations at rates of up to 43 kHz. Through careful control of aberrations, the modulator achieves an extinction ratio of 46 dB, and nearest-neighbor crosstalk of <span><span style=\"color: inherit;\"><span><span><span style=\"margin-left: 0.267em; margin-right: 0.267em;\">−</span></span><span><span><span>44</span></span></span><span style=\"width: 0.278em; height: 0em;\"></span><span><span><span>d</span><span>B</span></span></span></span></span><script type=\"math/tex\">{-}{{44}};{rm{dB}}</script></span> with a beam spacing of 4.6 waists. The underlying components can operate at wavelengths from the UV to the NIR, and sustain high laser intensities. This approach is suitable for local addressing of gates with low cross-talk error rates in any optically addressed qubit platform, including neutral atoms, trapped ions, or solid-state atomic defects.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"30 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139720340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-02-07DOI: 10.1364/optica.513551
Lars Pause, Lukas Sturm, Marcel Mittenbühler, Stephan Amann, Tilman Preuschoff, Dominik Schäffner, Malte Schlosser, and Gerhard Birkl
{"title":"Supercharged two-dimensional tweezer array with more than 1000 atomic qubits","authors":"Lars Pause, Lukas Sturm, Marcel Mittenbühler, Stephan Amann, Tilman Preuschoff, Dominik Schäffner, Malte Schlosser, and Gerhard Birkl","doi":"10.1364/optica.513551","DOIUrl":"https://doi.org/10.1364/optica.513551","url":null,"abstract":"We report on the realization of a large-scale quantum-processing architecture surpassing the tier of 1000 atomic qubits. By tiling multiple microlens-generated tweezer arrays, each operated by an independent laser source, we can eliminate laser-power limitations in the number of allocatable qubits. Already with two separate arrays, we implement combined 2D configurations of 3000 qubit sites with a mean number of 1167(46) single-atom quantum systems. The transfer of atoms between the two arrays is achieved with high efficiency. Thus, supercharging one array designated as the quantum processing unit with atoms from the secondary array significantly increases the number of qubits and the initial filling fraction. This drastically enlarges attainable qubit cluster sizes and success probabilities allowing us to demonstrate the defect-free assembly of clusters of up to 441 qubits with persistent stabilization at a near-unity filling fraction over tens of detection cycles. The presented method substantiates neutral atom quantum information science by facilitating configurable geometries of highly scalable quantum registers with immediate application in Rydberg-state-mediated quantum simulation, fault-tolerant universal quantum computation, quantum sensing, and quantum metrology.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"26 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}