Adrian Makowski, Michał Dąbrowski, Ivan Michel Antolovic, Claudio Bruschini, Hugo Defienne, Edoardo Charbon, Radek Lapkiewicz, and Sylvain Gigan
{"title":"使用 SPAD 阵列和多模光纤的大型可重构量子电路","authors":"Adrian Makowski, Michał Dąbrowski, Ivan Michel Antolovic, Claudio Bruschini, Hugo Defienne, Edoardo Charbon, Radek Lapkiewicz, and Sylvain Gigan","doi":"10.1364/optica.506943","DOIUrl":null,"url":null,"abstract":"Reprogrammable integrated optics provides a natural platform for tunable quantum photonic circuits, but faces challenges when high dimensions and high connectivity are involved. Here, we implement high-dimensional linear transformations on spatial modes of photons using wavefront shaping together with mode mixing in a multimode fiber, and measure photon correlations using a time-tagging single-photon avalanche diode (SPAD) array. Our demonstration of a generalization of a Hong-Ou-Mandel interference to 22 output ports shows the scalability potential of wavefront shaping in complex media in conjunction with SPAD arrays for implementing high-dimensional reconfigurable quantum circuits. Specifically, we achieved <span><span style=\"color: inherit;\"><span><span style=\"margin-left: 0em; margin-right: 0em;\">(</span><span>80.5</span><span style=\"margin-left: 0.267em; margin-right: 0.267em;\">±</span><span>6.8</span><span style=\"margin-left: 0em; margin-right: 0em;\">)</span><span>%</span></span></span><script type=\"math/tex\">(80.5 \\pm 6.8)\\%</script></span> similarity for indistinguishable photon pairs and <span><span style=\"color: inherit;\"><span><span style=\"margin-left: 0em; margin-right: 0em;\">(</span><span>84.9</span><span style=\"margin-left: 0.267em; margin-right: 0.267em;\">±</span><span>7.0</span><span style=\"margin-left: 0em; margin-right: 0em;\">)</span><span>%</span></span></span><script type=\"math/tex\">(84.9 \\pm 7.0)\\%</script></span> similarity for distinguishable photon pairs using 22 detectors and random circuits.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"1 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large reconfigurable quantum circuits with SPAD arrays and multimode fibers\",\"authors\":\"Adrian Makowski, Michał Dąbrowski, Ivan Michel Antolovic, Claudio Bruschini, Hugo Defienne, Edoardo Charbon, Radek Lapkiewicz, and Sylvain Gigan\",\"doi\":\"10.1364/optica.506943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reprogrammable integrated optics provides a natural platform for tunable quantum photonic circuits, but faces challenges when high dimensions and high connectivity are involved. Here, we implement high-dimensional linear transformations on spatial modes of photons using wavefront shaping together with mode mixing in a multimode fiber, and measure photon correlations using a time-tagging single-photon avalanche diode (SPAD) array. Our demonstration of a generalization of a Hong-Ou-Mandel interference to 22 output ports shows the scalability potential of wavefront shaping in complex media in conjunction with SPAD arrays for implementing high-dimensional reconfigurable quantum circuits. Specifically, we achieved <span><span style=\\\"color: inherit;\\\"><span><span style=\\\"margin-left: 0em; margin-right: 0em;\\\">(</span><span>80.5</span><span style=\\\"margin-left: 0.267em; margin-right: 0.267em;\\\">±</span><span>6.8</span><span style=\\\"margin-left: 0em; margin-right: 0em;\\\">)</span><span>%</span></span></span><script type=\\\"math/tex\\\">(80.5 \\\\pm 6.8)\\\\%</script></span> similarity for indistinguishable photon pairs and <span><span style=\\\"color: inherit;\\\"><span><span style=\\\"margin-left: 0em; margin-right: 0em;\\\">(</span><span>84.9</span><span style=\\\"margin-left: 0.267em; margin-right: 0.267em;\\\">±</span><span>7.0</span><span style=\\\"margin-left: 0em; margin-right: 0em;\\\">)</span><span>%</span></span></span><script type=\\\"math/tex\\\">(84.9 \\\\pm 7.0)\\\\%</script></span> similarity for distinguishable photon pairs using 22 detectors and random circuits.\",\"PeriodicalId\":19515,\"journal\":{\"name\":\"Optica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/optica.506943\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/optica.506943","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Large reconfigurable quantum circuits with SPAD arrays and multimode fibers
Reprogrammable integrated optics provides a natural platform for tunable quantum photonic circuits, but faces challenges when high dimensions and high connectivity are involved. Here, we implement high-dimensional linear transformations on spatial modes of photons using wavefront shaping together with mode mixing in a multimode fiber, and measure photon correlations using a time-tagging single-photon avalanche diode (SPAD) array. Our demonstration of a generalization of a Hong-Ou-Mandel interference to 22 output ports shows the scalability potential of wavefront shaping in complex media in conjunction with SPAD arrays for implementing high-dimensional reconfigurable quantum circuits. Specifically, we achieved (80.5±6.8)% similarity for indistinguishable photon pairs and (84.9±7.0)% similarity for distinguishable photon pairs using 22 detectors and random circuits.
期刊介绍:
Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.