Neurotoxicity Research最新文献

筛选
英文 中文
FABP3 Induces Mitochondrial Autophagy to Promote Neuronal Cell Apoptosis in Brain Ischemia-Reperfusion Injury. FABP3 在脑缺血再灌注损伤中诱导线粒体自噬以促进神经细胞凋亡
IF 2.9 3区 医学
Neurotoxicity Research Pub Date : 2024-07-15 DOI: 10.1007/s12640-024-00712-4
Fang-Fang Zhong, Bo Wei, Guo-Xiang Bao, Yi-Ping Lou, Ming-Er Wei, Xin-Yue Wang, Xiao Xiao, Jin-Jin Tian
{"title":"FABP3 Induces Mitochondrial Autophagy to Promote Neuronal Cell Apoptosis in Brain Ischemia-Reperfusion Injury.","authors":"Fang-Fang Zhong, Bo Wei, Guo-Xiang Bao, Yi-Ping Lou, Ming-Er Wei, Xin-Yue Wang, Xiao Xiao, Jin-Jin Tian","doi":"10.1007/s12640-024-00712-4","DOIUrl":"10.1007/s12640-024-00712-4","url":null,"abstract":"<p><p>This study elucidates the molecular mechanisms by which FABP3 regulates neuronal apoptosis via mitochondrial autophagy in the context of cerebral ischemia-reperfusion (I/R). Employing a transient mouse model of middle cerebral artery occlusion (MCAO) established using the filament method, brain tissue samples were procured from I/R mice. High-throughput transcriptome sequencing on the Illumina CN500 platform was performed to identify differentially expressed mRNAs. Critical genes were selected by intersecting I/R-related genes from the GeneCards database with the differentially expressed mRNAs. The in vivo mechanism was explored by infecting I/R mice with lentivirus. Brain tissue injury, infarct volume ratio in the ischemic penumbra, neurologic deficits, behavioral abilities, neuronal apoptosis, apoptotic factors, inflammatory factors, and lipid peroxidation markers were assessed using H&E staining, TTC staining, Longa scoring, rotation experiments, immunofluorescence staining, and Western blot. For in vitro validation, an OGD/R model was established using primary neuron cells. Cell viability, apoptosis rate, mitochondrial oxidative stress, morphology, autophagosome formation, membrane potential, LC3 protein levels, and colocalization of autophagosomes and mitochondria were evaluated using MTT assay, LDH release assay, flow cytometry, ROS/MDA/GSH-Px measurement, transmission electron microscopy, MitoTracker staining, JC-1 method, Western blot, and immunofluorescence staining. FABP3 was identified as a critical gene in I/R through integrated transcriptome sequencing and bioinformatics analysis. In vivo experiments revealed that FABP3 silencing mitigated brain tissue damage, reduced infarct volume ratio, improved neurologic deficits, restored behavioral abilities, and attenuated neuronal apoptosis, inflammation, and mitochondrial oxidative stress in I/R mice. In vitro experiments demonstrated that FABP3 silencing restored OGD/R cell viability, reduced neuronal apoptosis, and decreased mitochondrial oxidative stress. Moreover, FABP3 induced mitochondrial autophagy through ROS, which was inhibited by the free radical scavenger NAC. Blocking mitochondrial autophagy with sh-ATG5 lentivirus confirmed that FABP3 induces mitochondrial dysfunction and neuronal apoptosis by activating mitochondrial autophagy. In conclusion, FABP3 activates mitochondrial autophagy through ROS, leading to mitochondrial dysfunction and neuronal apoptosis, thereby promoting cerebral ischemia-reperfusion injury.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"35"},"PeriodicalIF":2.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cerebral White Matter Alterations Associated With Oligodendrocyte Vulnerability in Organic Acidurias: Insights in Glutaric Aciduria Type I. 有机酸尿症患者大脑白质改变与少突胶质细胞脆弱性有关:戊二酸尿症 I 型的启示。
IF 2.9 3区 医学
Neurotoxicity Research Pub Date : 2024-07-04 DOI: 10.1007/s12640-024-00710-6
Eugenia Isasi, Moacir Wajner, Juliana Avila Duarte, Silvia Olivera-Bravo
{"title":"Cerebral White Matter Alterations Associated With Oligodendrocyte Vulnerability in Organic Acidurias: Insights in Glutaric Aciduria Type I.","authors":"Eugenia Isasi, Moacir Wajner, Juliana Avila Duarte, Silvia Olivera-Bravo","doi":"10.1007/s12640-024-00710-6","DOIUrl":"10.1007/s12640-024-00710-6","url":null,"abstract":"<p><p>The white matter is an important constituent of the central nervous system, containing axons, oligodendrocytes, and its progenitor cells, astrocytes, and microglial cells. Oligodendrocytes are central for myelin synthesis, the insulating envelope that protects axons and allows normal neural conduction. Both, oligodendrocytes and myelin, are highly vulnerable to toxic factors in many neurodevelopmental and neurodegenerative disorders associated with disturbances of myelination. Here we review the main alterations in oligodendrocytes and myelin observed in some organic acidurias/acidemias, which correspond to inherited neurometabolic disorders biochemically characterized by accumulation of potentially neurotoxic organic acids and their derivatives. The yet incompletely understood mechanisms underlying the high vulnerability of OLs and/or myelin in glutaric acidemia type I, the most prototypical cerebral organic aciduria, are particularly discussed.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"33"},"PeriodicalIF":2.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Excitotoxicity, Oxidative Stress and Bioenergetics Disruption in the Neuropathology of Nonketotic Hyperglycinemia. 兴奋毒性、氧化应激和生物能破坏在非酮症性高血糖神经病理学中的作用
IF 2.9 3区 医学
Neurotoxicity Research Pub Date : 2024-06-29 DOI: 10.1007/s12640-024-00711-5
Guilhian Leipnitz, Jaqueline Santana da Rosa, Moacir Wajner
{"title":"The Role of Excitotoxicity, Oxidative Stress and Bioenergetics Disruption in the Neuropathology of Nonketotic Hyperglycinemia.","authors":"Guilhian Leipnitz, Jaqueline Santana da Rosa, Moacir Wajner","doi":"10.1007/s12640-024-00711-5","DOIUrl":"10.1007/s12640-024-00711-5","url":null,"abstract":"<p><p>Nonketotic hyperglycinemia (NKH) is an inherited disorder of amino acid metabolism biochemically characterized by the accumulation of glycine (Gly) predominantly in the brain. Affected patients usually manifest with neurological symptoms including hypotonia, seizures, epilepsy, lethargy, and coma, the pathophysiology of which is still not completely understood. Treatment is limited and based on lowering Gly levels aiming to reduce overstimulation of N-methyl-D-aspartate (NMDA) receptors. Mounting in vitro and in vivo animal and human evidence have recently suggested that excitotoxicity, oxidative stress, and bioenergetics disruption induced by Gly are relevant mechanisms involved in the neuropathology of NKH. This brief review gives emphasis to the deleterious effects of Gly in the brain of patients and animal models of NKH that may offer perspectives for the development of novel adjuvant treatments for this disorder.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"32"},"PeriodicalIF":2.9,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FOXA1 Suppresses Endoplasmic Reticulum Stress, Oxidative Stress, and Neuronal Apoptosis in Parkinson's Disease by Activating PON2 Transcription. FOXA1 通过激活 PON2 转录抑制帕金森病的内质网应激、氧化应激和神经元凋亡
IF 2.9 3区 医学
Neurotoxicity Research Pub Date : 2024-06-27 DOI: 10.1007/s12640-024-00709-z
Jiahui Liu, Yu Fan, Jinyu Chen, Meili Zhao, Changchun Jiang
{"title":"FOXA1 Suppresses Endoplasmic Reticulum Stress, Oxidative Stress, and Neuronal Apoptosis in Parkinson's Disease by Activating PON2 Transcription.","authors":"Jiahui Liu, Yu Fan, Jinyu Chen, Meili Zhao, Changchun Jiang","doi":"10.1007/s12640-024-00709-z","DOIUrl":"10.1007/s12640-024-00709-z","url":null,"abstract":"<p><p>Endoplasmic reticulum (ER) stress and oxidative stress (OS) are often related states in pathological conditions including Parkinson's disease (PD). This study investigates the role of anti-oxidant protein paraoxonase 2 (PON2) in ER stress and OS in PD, along with its regulatory molecule. PD was induced in C57BL/6 mice using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treatment and in SH-SY5Y cells using 1-methyl-4-phenylpyridinium. PON2 was found to be poorly expressed in the substantia nigra pars compacta (SNc) of PD mice, and its overexpression improved motor coordination of mice. Through the evaluation of tyrosine hydroxylase, dopamine transporter, reactive oxygen species (ROS), and C/EBP homologous protein (CHOP) levels and neuronal loss in mice, as well as the examination of CHOP, glucose-regulated protein 94 (GRP94), GRP78, caspase-12, sarco/endoplasmic reticulum calcium ATPase 2, malondialdehyde, and superoxide dismutase levels in SH-SY5Y cells, we observed that PON2 overexpression mitigated ER stress, OS, and neuronal apoptosis both in vivo and in vitro. Forkhead box A1 (FOXA1) was identified as a transcription factor binding to the PON2 promoter to activate its transcription. Upregulation of FOXA1 similarly protected against neuronal loss by alleviating ER stress and OS, while the protective roles were abrogated by additional PON2 silencing. In conclusion, this study demonstrates that FOXA1-mediated transcription of PON2 alleviates ER stress and OS, ultimately reducing neuronal apoptosis in PD.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"31"},"PeriodicalIF":2.9,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PEG300 Protects Mitochondrial Function By Upregulating PGC-1α to Delay Central Nervous System Oxygen Toxicity in Mice. PEG300 通过上调 PGC-1α 来保护线粒体功能,从而延缓小鼠中枢神经系统的氧毒性。
IF 2.9 3区 医学
Neurotoxicity Research Pub Date : 2024-06-17 DOI: 10.1007/s12640-024-00708-0
Xin Li, Yue Shen, Dan Li, Kun Zhang, Jia Liu, Lu Yao, Jun Yang, Jiao Qian
{"title":"PEG300 Protects Mitochondrial Function By Upregulating PGC-1α to Delay Central Nervous System Oxygen Toxicity in Mice.","authors":"Xin Li, Yue Shen, Dan Li, Kun Zhang, Jia Liu, Lu Yao, Jun Yang, Jiao Qian","doi":"10.1007/s12640-024-00708-0","DOIUrl":"10.1007/s12640-024-00708-0","url":null,"abstract":"<p><p>Central nervous system oxygen toxicity (CNS-OT) is a complication of hyperbaric oxygen (HBO) treatment, with limited prevention and treatment options available. In this study, we aimed to explore the effect of polyethylene glycol 300 (PEG300) on CNS-OT and underlying mechanisms. Motor and cognitive functions of mice in normobaric conditions were evaluated by Morris water maze, passive active avoidance, and rotarod tests. HBO was applied at 6 atmospheres absolute (ATA) for 30 min after drug administration. The latency period of convulsion in mice was recorded, and hippocampal tissues were extracted for biochemical experiments. Our experimental results showed that PEG300 extended the convulsion latencies in CNS-OT mice, reduced oxidative stress and inflammation levels in hippocampal tissues. Furthermore, PEG300 preserved mitochondrial integrity and maintained mitochondrial membrane potential in hippocampal tissue by upregulating Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α). This protective effect was enhanced following the administration of ZLN005, an agonist of PGC-1a. Hence, our study suggests that PEG300 might exert protective effects by upregulating PGC-1α expression and preserving mitochondrial health, offering promising prospects for CNS-OT treatment.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"30"},"PeriodicalIF":2.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of Hippocampal-Related Behavioral Changes in Adolescent Rats of both Sexes Following Voluntary Intermittent Ethanol Intake and Noise Exposure: A Putative Underlying Mechanism and Implementation of a Non-pharmacological Preventive Strategy. 评估自愿间歇摄入乙醇和暴露于噪声后青春期雌雄大鼠海马相关行为的变化:推测的基本机制和非药物预防策略的实施。
IF 2.9 3区 医学
Neurotoxicity Research Pub Date : 2024-06-10 DOI: 10.1007/s12640-024-00707-1
G E Buján, L D'Alessio, H A Serra, L R Guelman, S J Molina
{"title":"Assessment of Hippocampal-Related Behavioral Changes in Adolescent Rats of both Sexes Following Voluntary Intermittent Ethanol Intake and Noise Exposure: A Putative Underlying Mechanism and Implementation of a Non-pharmacological Preventive Strategy.","authors":"G E Buján, L D'Alessio, H A Serra, L R Guelman, S J Molina","doi":"10.1007/s12640-024-00707-1","DOIUrl":"10.1007/s12640-024-00707-1","url":null,"abstract":"<p><p>Ethanol (EtOH) intake and noise exposure are particularly concerning among human adolescents because the potential to harm brain. Unfortunately, putative underlying mechanisms remain to be elucidated. Moreover, implementing non-pharmacological strategies, such as enriched environments (EE), would be pertinent in the field of neuroprotection. This study aims to explore possible underlying triggering mechanism of hippocampus-dependent behaviors in adolescent animals of both sexes following ethanol intake, noise exposure, or a combination of both, as well as the impact of EE. Adolescent Wistar rats of both sexes were subjected to an intermittent voluntary EtOH intake paradigm for one week. A subgroup of animals was exposed to white noise for two hours after the last session of EtOH intake. Some animals of both groups were housed in EE cages. Hippocampal-dependent behavioral assessment and hippocampal oxidative state evaluation were performed. Results show that different hippocampal-dependent behavioral alterations might be induced in animals of both sexes after EtOH intake and sequential noise exposure, that in some cases are sex-specific. Moreover, hippocampal oxidative imbalance seems to be one of the potential underlying mechanisms. Additionally, most behavioral and oxidative alterations were prevented by EE. These findings suggest that two frequently found environmental agents may impact behavior and oxidative pathways in both sexes in an animal model. In addition, EE resulted a partially effective neuroprotective strategy. Therefore, it could be suggested that the implementation of a non-pharmacological approach might also potentially provide neuroprotective advantages against other challenges. Finally, considering its potential for translational human benefit might be worth.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 3","pages":"29"},"PeriodicalIF":2.9,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rotenone Induces a Neuropathological Phenotype in Cholinergic-like Neurons Resembling Parkinson's Disease Dementia (PDD). 罗替农诱导胆碱能样神经元出现类似帕金森氏症痴呆(PDD)的神经病理学表型
IF 2.9 3区 医学
Neurotoxicity Research Pub Date : 2024-06-06 DOI: 10.1007/s12640-024-00705-3
Daniela Giraldo-Berrio, Miguel Mendivil-Perez, Carlos Velez-Pardo, Marlene Jimenez-Del-Rio
{"title":"Rotenone Induces a Neuropathological Phenotype in Cholinergic-like Neurons Resembling Parkinson's Disease Dementia (PDD).","authors":"Daniela Giraldo-Berrio, Miguel Mendivil-Perez, Carlos Velez-Pardo, Marlene Jimenez-Del-Rio","doi":"10.1007/s12640-024-00705-3","DOIUrl":"10.1007/s12640-024-00705-3","url":null,"abstract":"<p><p>Parkinson's disease with dementia (PDD) is a neurological disorder that clinically and neuropathologically overlaps with Parkinson's disease (PD) and Alzheimer's disease (AD). Although it is assumed that alpha-synuclein ( <math><mi>α</mi></math> -Syn), amyloid beta (A <math><mi>β</mi></math> ), and the protein Tau might synergistically induce cholinergic neuronal degeneration, presently the pathological mechanism of PDD remains unclear. Therefore, it is essential to delve into the cellular and molecular aspects of this neurological entity to identify potential targets for prevention and treatment strategies. Cholinergic-like neurons (ChLNs) were exposed to rotenone (ROT, 10 <math><mi>μ</mi></math> M) for 24 h. ROT provokes loss of <math><mrow><mi>Δ</mi> <mrow><mi>Ψ</mi> <mi>m</mi></mrow> </mrow> </math> , generation of reactive oxygen species (ROS), phosphorylation of leucine-rich repeated kinase 2 (LRRK2 at Ser<sup>935</sup>) concomitantly with phosphorylation of <math><mi>α</mi></math> -synuclein ( <math><mi>α</mi></math> -Syn, Ser<sup>129</sup>), induces accumulation of intracellular A <math><mi>β</mi></math> (iA <math><mi>β</mi></math> ), oxidized DJ-1 (Cys<sup>106</sup>), as well as phosphorylation of TAU (Ser<sup>202</sup>/Thr<sup>205</sup>), increases the phosphorylation of c-JUN (Ser<sup>63</sup>/Ser<sup>73</sup>), and increases expression of proapoptotic proteins TP53, PUMA, and cleaved caspase 3 (CC3) in ChLNs. These neuropathological features resemble those reproduced in presenilin 1 (PSEN1) E280A ChLNs. Interestingly, anti-oxidant and anti-amyloid cannabidiol (CBD), JNK inhibitor SP600125 (SP), TP53 inhibitor pifithrin- <math><mi>α</mi></math> (PFT), and LRRK2 kinase inhibitor PF-06447475 (PF475) significantly diminish ROT-induced oxidative stress (OS), proteinaceous, and cell death markers in ChLNs compared to naïve ChLNs. In conclusion, ROT induces p- <math><mi>α</mi></math> -Syn, iA <math><mi>β</mi></math> , p-Tau, and cell death in ChLNs, recapitulating the neuropathology findings in PDD. Our report provides an excellent in vitro model to test for potential therapeutic strategies against PDD. Our data suggest that ROT induces a neuropathologic phenotype in ChLNs similar to that caused by the mutation PSEN1 E280A.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 3","pages":"28"},"PeriodicalIF":2.9,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fer-1 Protects against Isoflurane-Induced Ferroptosis in Astrocytes and Cognitive Impairment in Neonatal Mice. Fer-1 保护新生小鼠免受异氟醚诱导的星形胶质细胞铁突变和认知障碍的影响
IF 2.9 3区 医学
Neurotoxicity Research Pub Date : 2024-05-31 DOI: 10.1007/s12640-024-00706-2
Peng Zhang, Xiaotong Shi, Danyi He, Yu Hu, Yongchao Zhang, Youyi Zhao, Sanxing Ma, Shuhui Cao, Meiting Zhai, Ze Fan
{"title":"Fer-1 Protects against Isoflurane-Induced Ferroptosis in Astrocytes and Cognitive Impairment in Neonatal Mice.","authors":"Peng Zhang, Xiaotong Shi, Danyi He, Yu Hu, Yongchao Zhang, Youyi Zhao, Sanxing Ma, Shuhui Cao, Meiting Zhai, Ze Fan","doi":"10.1007/s12640-024-00706-2","DOIUrl":"10.1007/s12640-024-00706-2","url":null,"abstract":"<p><p>Early and prolonged exposure to anesthetic agents could cause neurodevelopmental disorders in children. Astrocytes, heavily outnumber neurons in the brain, are crucial regulators of synaptic formation and function during development. However, how general anesthetics act on astrocytes and the impact on cognition are still unclear. In this study, we investigated the role of ferroptosis and GPX4, a major hydroperoxide scavenger playing a pivotal role in suppressing the process of ferroptosis, and their underlying mechanism in isoflurane-induced cytotoxicity in astrocytes and cognitive impairment. Our results showed that early 6 h isoflurane anesthesia induced cognitive impairment in mice. Ferroptosis-relative genes and metabolic changes were involved in the pathological process of isoflurane-induced cytotoxicity in astrocytes. The level of GPX4 was decreased while the expression of 4-HNE and generation of ROS were elevated after isoflurane exposure. Selectively blocking ferroptosis with Fer-1 attenuated the abovementioned cytotoxicity in astrocytes, paralleling with the reverse of the changes in GPX4, ROS and 4-HNE secondary to isoflurane anesthesia. Fer-1 attenuated the cognitive impairment induced by prolonged isoflurane exposure. Thus, ferroptosis conduced towards isoflurane-induced cytotoxicity in astrocytes via suppressing GPX4 and promoting lipid peroxidation. Fer-1 was expected to be an underlying intervention for the neurotoxicity induced by isoflurane in the developing brain, and to alleviate cognitive impairment in neonates.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 3","pages":"27"},"PeriodicalIF":2.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141180237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Connexin 43 Promotes Neurogenesis via Regulating Aquaporin-4 after Cerebral Ischemia. 更正:脑缺血后,Connexin 43 通过调节 Aquaporin-4 促进神经再生
IF 2.9 3区 医学
Neurotoxicity Research Pub Date : 2024-04-30 DOI: 10.1007/s12640-024-00701-7
Heling Chu, Jing Dong, Yuping Tang, Chuyi Huang, Qihao Guo
{"title":"Correction to: Connexin 43 Promotes Neurogenesis via Regulating Aquaporin-4 after Cerebral Ischemia.","authors":"Heling Chu, Jing Dong, Yuping Tang, Chuyi Huang, Qihao Guo","doi":"10.1007/s12640-024-00701-7","DOIUrl":"10.1007/s12640-024-00701-7","url":null,"abstract":"","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 3","pages":"26"},"PeriodicalIF":2.9,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperoxia and brain: the link between necessity and injury from a molecular perspective 高氧与大脑:从分子角度看必要性与损伤之间的联系
IF 3.7 3区 医学
Neurotoxicity Research Pub Date : 2024-04-15 DOI: 10.1007/s12640-024-00702-6
Richard Simon Machado, Khiany Mathias, Larissa Joaquim, Rafaella Willig de Quadros, Gislaine Tezza Rezin, Fabricia Petronilho
{"title":"Hyperoxia and brain: the link between necessity and injury from a molecular perspective","authors":"Richard Simon Machado, Khiany Mathias, Larissa Joaquim, Rafaella Willig de Quadros, Gislaine Tezza Rezin, Fabricia Petronilho","doi":"10.1007/s12640-024-00702-6","DOIUrl":"https://doi.org/10.1007/s12640-024-00702-6","url":null,"abstract":"<p>Oxygen (O<sub>2</sub>) supplementation is commonly used to treat hypoxia in patients with respiratory failure. However, indiscriminate use can lead to hyperoxia, a condition detrimental to living tissues, particularly the brain. The brain is sensitive to reactive oxygen species (ROS) and inflammation caused by high concentrations of O<sub>2</sub>, which can result in brain damage and mitochondrial dysfunction, common features of neurodegenerative disorders. Hyperoxia leads to increased production of ROS, causing oxidative stress, an imbalance between oxidants and antioxidants, which can damage tissues. The brain is particularly vulnerable to oxidative stress due to its lipid composition, high O<sub>2</sub> consumption rate, and low levels of antioxidant enzymes. Moreover, hyperoxia can cause vasoconstriction and decreased O<sub>2</sub> supply to the brain, posing a challenge to redox balance and neurodegenerative processes. Studies have shown that the severity of hyperoxia-induced brain damage varies with inspired O<sub>2</sub> concentration and duration of exposure. Therefore, careful evaluation of the balance between benefits and risks of O<sub>2</sub> supplementation, especially in clinical settings, is crucial.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"94 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信