基于网络毒理学和分子对接的十溴联苯醚致人神经毒性机理分析。

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Fuat Karakuş, Burak Kuzu
{"title":"基于网络毒理学和分子对接的十溴联苯醚致人神经毒性机理分析。","authors":"Fuat Karakuş, Burak Kuzu","doi":"10.1007/s12640-025-00741-7","DOIUrl":null,"url":null,"abstract":"<p><p>Commercial decabromodiphenyl ether (c-decaBDE) is a widely used additive flame retardant in textiles and plastics. This formulation predominantly consists of the congener BDE-209, with trace amounts of other brominated diphenyl ether congeners, such as nonabromodiphenyl ether and octabromodiphenyl ether. Recognized as a persistent organic pollutant due to its potential for long-range environmental transport, c-decaBDE poses significant environmental threats and serious human health risks, including endocrine, reproductive, developmental, and neurotoxic effects. The mechanisms underlying its neurotoxicity remain largely undefined. This study investigates the neurotoxic effects of BDE-209 in humans through network toxicology, multi-level bioinformatics approaches, and molecular docking analyses. Prediction results indicate that BDE-209 can cross the blood-brain barrier, entering the central nervous system and inducing neurotoxic effects. A comprehensive analysis has identified 294 potential targets linked to the neurotoxicity induced by BDE-209. Gene-gene interaction and pathway enrichment analyses revealed significant associations related to cellular responses to chemical stress and synaptic transmission. Further investigation of protein-protein interactions, combined with centrality analysis, identified 14 hub targets, including CaMK-II alpha, PSD-95, GluR-1, and GluN2B, as key proteins in this process. Molecular docking results indicate that BDE-209 exhibits a stronger binding affinity to GluN2B, a subunit of the N-methyl-D-aspartate (NMDA) receptors, compared to other key targets. These findings suggest that BDE-209 may disrupt the function of GluN2B-containing NMDA receptors, potentially leading to their inhibition. Such inhibition could result in reduced excitatory neurotransmission, impairing synaptic potentiation and plasticity, and ultimately contributing to neurotoxicity.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"43 2","pages":"17"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930881/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Analysis of Decabromodiphenyl Ether-Induced Neurotoxicity in Humans Using Network Toxicology and Molecular Docking.\",\"authors\":\"Fuat Karakuş, Burak Kuzu\",\"doi\":\"10.1007/s12640-025-00741-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Commercial decabromodiphenyl ether (c-decaBDE) is a widely used additive flame retardant in textiles and plastics. This formulation predominantly consists of the congener BDE-209, with trace amounts of other brominated diphenyl ether congeners, such as nonabromodiphenyl ether and octabromodiphenyl ether. Recognized as a persistent organic pollutant due to its potential for long-range environmental transport, c-decaBDE poses significant environmental threats and serious human health risks, including endocrine, reproductive, developmental, and neurotoxic effects. The mechanisms underlying its neurotoxicity remain largely undefined. This study investigates the neurotoxic effects of BDE-209 in humans through network toxicology, multi-level bioinformatics approaches, and molecular docking analyses. Prediction results indicate that BDE-209 can cross the blood-brain barrier, entering the central nervous system and inducing neurotoxic effects. A comprehensive analysis has identified 294 potential targets linked to the neurotoxicity induced by BDE-209. Gene-gene interaction and pathway enrichment analyses revealed significant associations related to cellular responses to chemical stress and synaptic transmission. Further investigation of protein-protein interactions, combined with centrality analysis, identified 14 hub targets, including CaMK-II alpha, PSD-95, GluR-1, and GluN2B, as key proteins in this process. Molecular docking results indicate that BDE-209 exhibits a stronger binding affinity to GluN2B, a subunit of the N-methyl-D-aspartate (NMDA) receptors, compared to other key targets. These findings suggest that BDE-209 may disrupt the function of GluN2B-containing NMDA receptors, potentially leading to their inhibition. Such inhibition could result in reduced excitatory neurotransmission, impairing synaptic potentiation and plasticity, and ultimately contributing to neurotoxicity.</p>\",\"PeriodicalId\":19193,\"journal\":{\"name\":\"Neurotoxicity Research\",\"volume\":\"43 2\",\"pages\":\"17\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930881/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicity Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12640-025-00741-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-025-00741-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

商用十溴联苯醚(c-decaBDE)是一种广泛应用于纺织品和塑料的阻燃剂。该制剂主要由同系物BDE-209和微量其他溴化二苯醚同系物组成,如非溴二苯醚和八溴二苯醚。十溴二苯醚是一种持久性有机污染物,具有远距离环境迁移的潜力,对环境构成重大威胁,对人类健康构成严重风险,包括内分泌、生殖、发育和神经毒性影响。其神经毒性的机制在很大程度上仍未明确。本研究通过网络毒理学、多层次生物信息学方法和分子对接分析研究了BDE-209对人类的神经毒性作用。预测结果表明,BDE-209可穿过血脑屏障,进入中枢神经系统,引起神经毒性作用。一项综合分析已经确定了294个与BDE-209引起的神经毒性有关的潜在靶点。基因-基因相互作用和通路富集分析显示,细胞对化学应激和突触传递的反应存在显著关联。进一步研究蛋白-蛋白相互作用,结合中心性分析,确定了14个枢纽靶点,包括CaMK-II α, PSD-95, GluR-1和GluN2B,是这一过程的关键蛋白。分子对接结果表明,与其他关键靶点相比,BDE-209与n -甲基- d -天冬氨酸(NMDA)受体亚基GluN2B具有更强的结合亲和力。这些发现表明,BDE-209可能破坏glun2b含NMDA受体的功能,可能导致其抑制。这种抑制可能导致兴奋性神经传递减少,损害突触增强和可塑性,最终导致神经毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic Analysis of Decabromodiphenyl Ether-Induced Neurotoxicity in Humans Using Network Toxicology and Molecular Docking.

Commercial decabromodiphenyl ether (c-decaBDE) is a widely used additive flame retardant in textiles and plastics. This formulation predominantly consists of the congener BDE-209, with trace amounts of other brominated diphenyl ether congeners, such as nonabromodiphenyl ether and octabromodiphenyl ether. Recognized as a persistent organic pollutant due to its potential for long-range environmental transport, c-decaBDE poses significant environmental threats and serious human health risks, including endocrine, reproductive, developmental, and neurotoxic effects. The mechanisms underlying its neurotoxicity remain largely undefined. This study investigates the neurotoxic effects of BDE-209 in humans through network toxicology, multi-level bioinformatics approaches, and molecular docking analyses. Prediction results indicate that BDE-209 can cross the blood-brain barrier, entering the central nervous system and inducing neurotoxic effects. A comprehensive analysis has identified 294 potential targets linked to the neurotoxicity induced by BDE-209. Gene-gene interaction and pathway enrichment analyses revealed significant associations related to cellular responses to chemical stress and synaptic transmission. Further investigation of protein-protein interactions, combined with centrality analysis, identified 14 hub targets, including CaMK-II alpha, PSD-95, GluR-1, and GluN2B, as key proteins in this process. Molecular docking results indicate that BDE-209 exhibits a stronger binding affinity to GluN2B, a subunit of the N-methyl-D-aspartate (NMDA) receptors, compared to other key targets. These findings suggest that BDE-209 may disrupt the function of GluN2B-containing NMDA receptors, potentially leading to their inhibition. Such inhibition could result in reduced excitatory neurotransmission, impairing synaptic potentiation and plasticity, and ultimately contributing to neurotoxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信