Mechanistic Analysis of Decabromodiphenyl Ether-Induced Neurotoxicity in Humans Using Network Toxicology and Molecular Docking.

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Fuat Karakuş, Burak Kuzu
{"title":"Mechanistic Analysis of Decabromodiphenyl Ether-Induced Neurotoxicity in Humans Using Network Toxicology and Molecular Docking.","authors":"Fuat Karakuş, Burak Kuzu","doi":"10.1007/s12640-025-00741-7","DOIUrl":null,"url":null,"abstract":"<p><p>Commercial decabromodiphenyl ether (c-decaBDE) is a widely used additive flame retardant in textiles and plastics. This formulation predominantly consists of the congener BDE-209, with trace amounts of other brominated diphenyl ether congeners, such as nonabromodiphenyl ether and octabromodiphenyl ether. Recognized as a persistent organic pollutant due to its potential for long-range environmental transport, c-decaBDE poses significant environmental threats and serious human health risks, including endocrine, reproductive, developmental, and neurotoxic effects. The mechanisms underlying its neurotoxicity remain largely undefined. This study investigates the neurotoxic effects of BDE-209 in humans through network toxicology, multi-level bioinformatics approaches, and molecular docking analyses. Prediction results indicate that BDE-209 can cross the blood-brain barrier, entering the central nervous system and inducing neurotoxic effects. A comprehensive analysis has identified 294 potential targets linked to the neurotoxicity induced by BDE-209. Gene-gene interaction and pathway enrichment analyses revealed significant associations related to cellular responses to chemical stress and synaptic transmission. Further investigation of protein-protein interactions, combined with centrality analysis, identified 14 hub targets, including CaMK-II alpha, PSD-95, GluR-1, and GluN2B, as key proteins in this process. Molecular docking results indicate that BDE-209 exhibits a stronger binding affinity to GluN2B, a subunit of the N-methyl-D-aspartate (NMDA) receptors, compared to other key targets. These findings suggest that BDE-209 may disrupt the function of GluN2B-containing NMDA receptors, potentially leading to their inhibition. Such inhibition could result in reduced excitatory neurotransmission, impairing synaptic potentiation and plasticity, and ultimately contributing to neurotoxicity.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"43 2","pages":"17"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930881/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-025-00741-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Commercial decabromodiphenyl ether (c-decaBDE) is a widely used additive flame retardant in textiles and plastics. This formulation predominantly consists of the congener BDE-209, with trace amounts of other brominated diphenyl ether congeners, such as nonabromodiphenyl ether and octabromodiphenyl ether. Recognized as a persistent organic pollutant due to its potential for long-range environmental transport, c-decaBDE poses significant environmental threats and serious human health risks, including endocrine, reproductive, developmental, and neurotoxic effects. The mechanisms underlying its neurotoxicity remain largely undefined. This study investigates the neurotoxic effects of BDE-209 in humans through network toxicology, multi-level bioinformatics approaches, and molecular docking analyses. Prediction results indicate that BDE-209 can cross the blood-brain barrier, entering the central nervous system and inducing neurotoxic effects. A comprehensive analysis has identified 294 potential targets linked to the neurotoxicity induced by BDE-209. Gene-gene interaction and pathway enrichment analyses revealed significant associations related to cellular responses to chemical stress and synaptic transmission. Further investigation of protein-protein interactions, combined with centrality analysis, identified 14 hub targets, including CaMK-II alpha, PSD-95, GluR-1, and GluN2B, as key proteins in this process. Molecular docking results indicate that BDE-209 exhibits a stronger binding affinity to GluN2B, a subunit of the N-methyl-D-aspartate (NMDA) receptors, compared to other key targets. These findings suggest that BDE-209 may disrupt the function of GluN2B-containing NMDA receptors, potentially leading to their inhibition. Such inhibition could result in reduced excitatory neurotransmission, impairing synaptic potentiation and plasticity, and ultimately contributing to neurotoxicity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信