Lan-Yang Wang, Hao Hu, Ze-Hu Sheng, He-Ying Hu, Ya-Nan Ou, Fan Guo, Yang-Ke Zhu, Lan Tan
{"title":"非痴呆成人阿尔茨海默病血管紧张素转换酶、神经炎症和脑脊液生物标志物之间的关系","authors":"Lan-Yang Wang, Hao Hu, Ze-Hu Sheng, He-Ying Hu, Ya-Nan Ou, Fan Guo, Yang-Ke Zhu, Lan Tan","doi":"10.1007/s12640-025-00740-8","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have identified the angiotensin-converting enzyme (ACE) gene as a potential candidate influencing Alzheimer's disease (AD) risk. It is crucial to investigate the impact of ACE on AD pathology and its underlying mechanisms. A total of 450 non-demented participants from the Alzheimer's disease Neuroimaging Initiative (ADNI) with data on cerebrospinal fluid (CSF) ACE, AD core biomarkers and inflammation-related biomarkers were included. Multiple linear regression was used to assess the associations among CSF ACE, AD core biomarkers and inflammation-related biomarkers. And we used the mediation models to investigate the potential mechanisms through which ACE influenced AD pathology. The results of multiple linear regression were shown that CSF ACE was significantly correlated with CSF Aβ<sub>42</sub>, P-tau, T-tau (all P < 0.001), and inflammation-related biomarkers (soluble triggering receptor expressed on myeloid cells 2 [sTREM2], progranulin [PGRN], glial fibrillary acidic protein [GFAP], transforming growth factor [TGF]-β1, TGF-β2, TGF-β3, tumor necrosis factor [TNF]-R1, TNF-R2, TNF-α, interleukin [IL]-21, IL-6, IL-7, IL-9, IL-10, IL-12p40, vascular cell adhesion molecule-1 [VCAM-1], and intercellular adhesion molecule-1 [ICAM-1]) (all P < 0.05). In addition, the mediation analysis results showed that the association of CSF ACE and inflammation-related biomarkers (sTREM2, PGRN, TGF-β1, TGF-β2, TNFR1, IL-6, IL-7, IL-9, and VCAM-1) mediated the correlation of CSF Aβ<sub>42</sub> with P-tau. Our findings show that CSF ACE and neuroinflammation are correlated and that their correlation mediates the link between Aβ pathology and P-tau. This suggests ACE may play a significant role in the progression from Aβ pathology to tau pathology.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"43 2","pages":"20"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associations among Angiotensin-Converting Enzyme, Neuroinflammation, and Cerebrospinal Fluid Biomarkers of Alzheimer's Disease in Non-Dementia Adults.\",\"authors\":\"Lan-Yang Wang, Hao Hu, Ze-Hu Sheng, He-Ying Hu, Ya-Nan Ou, Fan Guo, Yang-Ke Zhu, Lan Tan\",\"doi\":\"10.1007/s12640-025-00740-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies have identified the angiotensin-converting enzyme (ACE) gene as a potential candidate influencing Alzheimer's disease (AD) risk. It is crucial to investigate the impact of ACE on AD pathology and its underlying mechanisms. A total of 450 non-demented participants from the Alzheimer's disease Neuroimaging Initiative (ADNI) with data on cerebrospinal fluid (CSF) ACE, AD core biomarkers and inflammation-related biomarkers were included. Multiple linear regression was used to assess the associations among CSF ACE, AD core biomarkers and inflammation-related biomarkers. And we used the mediation models to investigate the potential mechanisms through which ACE influenced AD pathology. The results of multiple linear regression were shown that CSF ACE was significantly correlated with CSF Aβ<sub>42</sub>, P-tau, T-tau (all P < 0.001), and inflammation-related biomarkers (soluble triggering receptor expressed on myeloid cells 2 [sTREM2], progranulin [PGRN], glial fibrillary acidic protein [GFAP], transforming growth factor [TGF]-β1, TGF-β2, TGF-β3, tumor necrosis factor [TNF]-R1, TNF-R2, TNF-α, interleukin [IL]-21, IL-6, IL-7, IL-9, IL-10, IL-12p40, vascular cell adhesion molecule-1 [VCAM-1], and intercellular adhesion molecule-1 [ICAM-1]) (all P < 0.05). In addition, the mediation analysis results showed that the association of CSF ACE and inflammation-related biomarkers (sTREM2, PGRN, TGF-β1, TGF-β2, TNFR1, IL-6, IL-7, IL-9, and VCAM-1) mediated the correlation of CSF Aβ<sub>42</sub> with P-tau. Our findings show that CSF ACE and neuroinflammation are correlated and that their correlation mediates the link between Aβ pathology and P-tau. This suggests ACE may play a significant role in the progression from Aβ pathology to tau pathology.</p>\",\"PeriodicalId\":19193,\"journal\":{\"name\":\"Neurotoxicity Research\",\"volume\":\"43 2\",\"pages\":\"20\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicity Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12640-025-00740-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-025-00740-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Associations among Angiotensin-Converting Enzyme, Neuroinflammation, and Cerebrospinal Fluid Biomarkers of Alzheimer's Disease in Non-Dementia Adults.
Recent studies have identified the angiotensin-converting enzyme (ACE) gene as a potential candidate influencing Alzheimer's disease (AD) risk. It is crucial to investigate the impact of ACE on AD pathology and its underlying mechanisms. A total of 450 non-demented participants from the Alzheimer's disease Neuroimaging Initiative (ADNI) with data on cerebrospinal fluid (CSF) ACE, AD core biomarkers and inflammation-related biomarkers were included. Multiple linear regression was used to assess the associations among CSF ACE, AD core biomarkers and inflammation-related biomarkers. And we used the mediation models to investigate the potential mechanisms through which ACE influenced AD pathology. The results of multiple linear regression were shown that CSF ACE was significantly correlated with CSF Aβ42, P-tau, T-tau (all P < 0.001), and inflammation-related biomarkers (soluble triggering receptor expressed on myeloid cells 2 [sTREM2], progranulin [PGRN], glial fibrillary acidic protein [GFAP], transforming growth factor [TGF]-β1, TGF-β2, TGF-β3, tumor necrosis factor [TNF]-R1, TNF-R2, TNF-α, interleukin [IL]-21, IL-6, IL-7, IL-9, IL-10, IL-12p40, vascular cell adhesion molecule-1 [VCAM-1], and intercellular adhesion molecule-1 [ICAM-1]) (all P < 0.05). In addition, the mediation analysis results showed that the association of CSF ACE and inflammation-related biomarkers (sTREM2, PGRN, TGF-β1, TGF-β2, TNFR1, IL-6, IL-7, IL-9, and VCAM-1) mediated the correlation of CSF Aβ42 with P-tau. Our findings show that CSF ACE and neuroinflammation are correlated and that their correlation mediates the link between Aβ pathology and P-tau. This suggests ACE may play a significant role in the progression from Aβ pathology to tau pathology.
期刊介绍:
Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes.
Published papers have focused on:
NEURODEGENERATION and INJURY
Neuropathologies
Neuronal apoptosis
Neuronal necrosis
Neural death processes (anatomical, histochemical, neurochemical)
Neurodegenerative Disorders
Neural Effects of Substances of Abuse
NERVE REGENERATION and RESPONSES TO INJURY
Neural Adaptations
Neurotrophin mechanisms and actions
NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION
Excitatory amino acids
Neurotoxins, endogenous and synthetic
Reactive oxygen (nitrogen) species
Neuroprotection by endogenous and exogenous agents
Papers on related themes are welcome.