{"title":"Structural connectivity of the precuneus and its relation to resting-state networks","authors":"Atsushi Yamaguchi, Tatsuya Jitsuishi","doi":"10.1016/j.neures.2023.12.004","DOIUrl":"10.1016/j.neures.2023.12.004","url":null,"abstract":"<div><div>The precuneus is an association area in the posteromedial cortex (PMC) that is involved in high-order cognitive functions through integrating multi-modal information. Previous studies have shown that the precuneus is functionally heterogeneous and subdivided into several subfields organized by the anterior-posterior and ventral-dorsal axes. Further, the precuneus forms the structural core of brain connectivity as a rich-club hub and overlaps with the default mode network (DMN) as the functional core. This review summarizes recent research on the connectivity and cognitive functions of the precuneus. We then present our recent tractography-based studies of the precuneus and contextual these results here with respect to possible cognitive functions and resting-state networks.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"209 ","pages":"Pages 9-17"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139074572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bidirectional valence coding in amygdala intercalated clusters: A neural substrate for the opponent-process theory of motivation","authors":"Kenta M. Hagihara , Andreas Lüthi","doi":"10.1016/j.neures.2024.07.003","DOIUrl":"10.1016/j.neures.2024.07.003","url":null,"abstract":"<div><div>Processing emotionally meaningful stimuli and eliciting appropriate valence-specific behavior in response is a critical brain function for survival. Thus, how positive and negative valence are represented in neural circuits and how corresponding neural substrates interact to cooperatively select appropriate behavioral output are fundamental questions. In previous work, we identified that two amygdala intercalated clusters show opposite response selectivity to fear- and anxiety-inducing stimuli – negative valence (<span><span>Hagihara et al., 2021</span></span>). Here, we further show that the two clusters also exhibit distinctly different representations of stimuli with positive valence, demonstrating a broader role of the amygdala intercalated system beyond fear and anxiety. Together with the mutually inhibitory connectivity between the two clusters, our findings suggest that they serve as an ideal neural substrate for the integrated processing of valence for the selection of behavioral output.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"209 ","pages":"Pages 28-33"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel quadrant spatial assay reveals environmental preference in mouse spontaneous and parental behaviors","authors":"Aito Narita , Hirofumi Asano , Hayato Kudo , Shigeo Miyata , Fumihiro Shutoh , Goichi Miyoshi","doi":"10.1016/j.neures.2024.08.002","DOIUrl":"10.1016/j.neures.2024.08.002","url":null,"abstract":"<div><div>Environmental factors have well-documented impacts on brain development and mental health. Therefore, it is crucial to employ a reliable assay system to assess the spatial preference of model animals. In this study, we introduced an unbiased quadrant chamber assay system and discovered that parental pup-gathering behavior takes place in a very efficient manner. Furthermore, we found that test mice exhibited preferences for specific environments in both spontaneous and parental pup-gathering behavior contexts. Notably, the spatial preferences of autism spectrum disorder model animals were initially suppressed but later equalized during the spontaneous behavior assay, accompanied by increased time spent in the preferred chamber. In conclusion, our novel quadrant chamber assay system provides an ideal platform for investigating the spatial preference of mice, offering potential applications in studying environmental impacts and exploring neurodevelopmental and psychiatric disorder models.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"209 ","pages":"Pages 18-27"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrick J. Pruitt , Lingfei Tang , Jessica M. Hayes , Noa Ofen , Jessica S. Damoiseaux
{"title":"Lifespan differences in background functional connectivity of core cognitive large-scale brain networks","authors":"Patrick J. Pruitt , Lingfei Tang , Jessica M. Hayes , Noa Ofen , Jessica S. Damoiseaux","doi":"10.1016/j.neures.2022.09.005","DOIUrl":"10.1016/j.neures.2022.09.005","url":null,"abstract":"<div><div>Large-scale brain networks undergo functional reorganization over the course of the lifespan, with concurrent implications for cognition. Characterizing network connectivity during a task may provide complementary insight into cognitive development and aging, to that provided by resting-state. We assessed network background connectivity, which refers to connectivity that remains after task effects have been regressed out, during a visual memory-encoding task in a lifespan sample. More specifically we assessed the within- and between-network background connectivity of the default mode, salience, and frontoparietal networks. Within-network background connectivity of salience and frontoparietal networks differed between age groups, with late-life adults showing lower connectivity. We did not find an effect of age group in default mode network background connectivity, contrary to previous findings using resting-state. However, default mode between-network background connectivity with salience and frontoparietal networks was greater in mid-life and late-life adults than in younger age groups. Overall, our findings in a lifespan sample are in line with previous observations of age-related network de-differentiation. However, the lack of age effect in default mode network background connectivity suggests that background connectivity indeed represents a complementary measure to resting-state connectivity, providing a differential glance of network connectivity during a particular state.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"209 ","pages":"Pages 1-8"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9278233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Future projections for mammalian whole-brain simulations based on technological trends in related fields","authors":"Jun Igarashi","doi":"10.1016/j.neures.2024.11.005","DOIUrl":"10.1016/j.neures.2024.11.005","url":null,"abstract":"<div><div>Large-scale brain simulation allows us to understand the interaction of vast numbers of neurons having nonlinear dynamics to help understand the information processing mechanisms in the brain. The scale of brain simulations continues to rise as computer performance improves exponentially. However, a simulation of the human whole brain has not yet been achieved as of 2024 due to insufficient computational performance and brain measurement data. This paper examines technological trends in supercomputers, cell type classification, connectomics, and large-scale activity measurements relevant to whole-brain simulation. Based on these trends, we attempt to predict the feasible timeframe for mammalian whole-brain simulation. Our estimates suggest that mouse whole-brain simulation at the cellular level could be realized around 2034, marmoset around 2044, and human likely later than 2044.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"215 ","pages":"Pages 64-76"},"PeriodicalIF":2.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142686535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular, neural, and tissue circuits underlying physiological temperature responses in Caenorhabditis elegans","authors":"Yukina Mori , Akane Ohta , Atsushi Kuhara","doi":"10.1016/j.neures.2024.11.001","DOIUrl":"10.1016/j.neures.2024.11.001","url":null,"abstract":"<div><div>Temperature is a constant environmental factor on Earth, acting as a continuous stimulus that organisms must constantly perceive to survive. Organisms possess neural systems that receive various types of environmental information, including temperature, and mechanisms for adapting to their surroundings. This paper provides insights into the neural circuits and intertissue networks involved in physiological temperature responses, specifically the mechanisms of “cold tolerance” and “temperature acclimation,” based on an analysis of the nematode <em>Caenorhabditis elegans</em> as an experimental system for neural and intertissue information processing.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"214 ","pages":"Pages 23-31"},"PeriodicalIF":2.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A chemogenetic technology using insect Ionotropic Receptors to stimulate target cell populations in the mammalian brain","authors":"Yoshio Iguchi , Richard Benton , Kazuto Kobayashi","doi":"10.1016/j.neures.2024.11.003","DOIUrl":"10.1016/j.neures.2024.11.003","url":null,"abstract":"<div><div>Chemogenetics uses artificially-engineered proteins to modify the activity of cells, notably neurons, in response to small molecules. Although a common set of chemogenetic tools are the G protein-coupled receptor-based DREADDs, there has been great hope for ligand-gated, ion channel-type chemogenetic tools that directly impact neuronal excitability. We have devised such a technology by exploiting insect Ionotropic Receptors (IRs), a highly divergent subfamily of ionotropic glutamate receptors that evolved to detect diverse environmental chemicals. Here, we review a series of studies developing and applying this “IR-mediated neuronal activation” (IRNA) technology with the <em>Drosophila melanogaster</em> IR84a/IR8a complex, which detects phenyl-containing ligands. We also discuss how variants of IRNA could be produced by modifying the composition of the IR complex, using natural or engineered subunits, which would enable artificial activation of different cell populations in the brain in response to distinct chemicals.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"214 ","pages":"Pages 56-61"},"PeriodicalIF":2.4,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular mechanisms linking loss of TDP-43 function to amyotrophic lateral sclerosis/frontotemporal dementia-related genes","authors":"","doi":"10.1016/j.neures.2024.05.001","DOIUrl":"10.1016/j.neures.2024.05.001","url":null,"abstract":"<div><div>Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by nuclear depletion and cytoplasmic aggregation of TAR DNA-binding protein-43 (TDP-43). TDP-43 plays a key role in regulating the splicing of numerous genes, including <em>TARDBP</em>. This review aims to delineate two aspects of ALS/FTD pathogenesis associated with TDP-43 function. First, we described novel mechanistic insights into the splicing of <em>UNC13A</em>, a TDP-43 target gene. Single nucleotide polymorphisms (SNPs) in <em>UNC13A</em> are the most common risk factors for ALS/FTD. We found that TDP-43 represses “cryptic exon” inclusion during <em>UNC13A</em> RNA splicing. A risk-associated SNP in this exon results in increased RNA levels of <em>UNC13A</em> retaining the cryptic exon. Second, we described the perturbation of the TDP-43 autoregulatory mechanism caused by age-related DNA demethylation. Aging is a major risk factor for sporadic ALS/FTD. Typically, TDP-43 levels are regulated via alternative splicing of <em>TARDBP</em> mRNA. This review focused on that <em>TARDBP</em> methylation is altered by aging, thereby disrupting TDP-43 autoregulation. It was found that demethylation reduces the efficiency of alternative splicing and increases <em>TARDBP</em> mRNA levels. Moreover, we demonstrated that, with aging, this region is demethylated in the human motor cortex and is associated with the early onset of ALS.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"208 ","pages":"Pages 1-7"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gait rhythm analysis as a new continuous scale for cerebellar ataxia: Power law and lognormal components represent the ataxic gait quantity","authors":"","doi":"10.1016/j.neures.2024.07.001","DOIUrl":"10.1016/j.neures.2024.07.001","url":null,"abstract":"<div><div>We estimated the severity of cerebellar ataxia by analyzing gait rhythm. We measured the step times in patients with pure cerebellar ataxia and healthy controls and then analyzed the distribution of the ratios of adjacent times. Gait rhythm displayed the best adaptation when expressed as the sum of the power law and lognormal distributions in both groups, and the groups could be distinguished by the exponent of the power law distribution, reflecting the fractal property of gait rhythm. Gait rhythm might reflect different features of impairment in patients with cerebellar ataxia, making it a useful continuous scale for cerebellar ataxia.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"208 ","pages":"Pages 39-43"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Run-Qi Li , Wei-Wen Zhu , Cheng Li , Ke-Bin Zhan , Ping Zhang , Fan Xiao , Jia-Mei Jiang , Wei Zou
{"title":"Hippocampal warburg effect mediates hydrogen sulfide-ameliorated diabetes-associated cognitive dysfunction: Involving promotion of hippocampal synaptic plasticity","authors":"Run-Qi Li , Wei-Wen Zhu , Cheng Li , Ke-Bin Zhan , Ping Zhang , Fan Xiao , Jia-Mei Jiang , Wei Zou","doi":"10.1016/j.neures.2024.07.002","DOIUrl":"10.1016/j.neures.2024.07.002","url":null,"abstract":"<div><div>Our previous studies have reported that hydrogen sulfide (H<sub>2</sub>S) has ability to improve diabetes-associated cognitive dysfunction (DACD), but the exact mechanisms remain unknown. Recent research reveals that Warburg effect is associated with synaptic plasticity which plays a key role in cognition promotion. Herein, the present study was aimed to demonstrate whether hippocampal Warburg effect contributes to H<sub>2</sub>S-ameliorated DACD and further explore its potential mechanism. We found that H<sub>2</sub>S promoted the hippocampal Warburg effect and inhibited the OxPhos in the hippocampus of STZ-induced diabetic rats. It also improved the hippocampal synaptic plasticity in STZ-induced diabetic rats, as evidenced by the change of microstructures and the expression of different key-enzymes. Furthermore, inhibited hippocampal Warburg effect induced by DCA markedly abolished the improvement of H<sub>2</sub>S on synaptic plasticity in the hippocampus of STZ-induced diabetic rats. DCA blocked H<sub>2</sub>S-attenuated the cognitive dysfunction in STZ-induced diabetic rats, according to the Y-maze, Novel Objective Recognition, and Morris Water Maze tests. Collectively, these findings indicated that the hippocampal Warburg effect mediates H<sub>2</sub>S-ameliorated DACD by improving hippocampal synaptic plasticity.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"208 ","pages":"Pages 15-28"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}