Patrick J Pruitt, Lingfei Tang, Jessica M Hayes, Noa Ofen, Jessica S Damoiseaux
{"title":"Lifespan differences in background functional connectivity of core cognitive large-scale brain networks.","authors":"Patrick J Pruitt, Lingfei Tang, Jessica M Hayes, Noa Ofen, Jessica S Damoiseaux","doi":"10.1016/j.neures.2022.09.005","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale brain networks undergo functional reorganization over the course of the lifespan, with concurrent implications for cognition. Characterizing network connectivity during a task may provide complementary insight into cognitive development and aging, to that provided by resting-state. We assessed network background connectivity, which refers to connectivity that remains after task effects have been regressed out, during a visual memory-encoding task in a lifespan sample. More specifically we assessed the within- and between-network background connectivity of the default mode, salience, and frontoparietal networks. Within-network background connectivity of salience and frontoparietal networks differed between age groups, with late-life adults showing lower connectivity. We did not find an effect of age group in default mode network background connectivity, contrary to previous findings using resting-state. However, default mode between-network background connectivity with salience and frontoparietal networks was greater in mid-life and late-life adults than in younger age groups. Overall, our findings in a lifespan sample are in line with previous observations of age-related network de-differentiation. However, the lack of age effect in default mode network background connectivity suggests that background connectivity indeed represents a complementary measure to resting-state connectivity, providing a differential glance of network connectivity during a particular state.</p>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":" ","pages":"1-8"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neures.2022.09.005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale brain networks undergo functional reorganization over the course of the lifespan, with concurrent implications for cognition. Characterizing network connectivity during a task may provide complementary insight into cognitive development and aging, to that provided by resting-state. We assessed network background connectivity, which refers to connectivity that remains after task effects have been regressed out, during a visual memory-encoding task in a lifespan sample. More specifically we assessed the within- and between-network background connectivity of the default mode, salience, and frontoparietal networks. Within-network background connectivity of salience and frontoparietal networks differed between age groups, with late-life adults showing lower connectivity. We did not find an effect of age group in default mode network background connectivity, contrary to previous findings using resting-state. However, default mode between-network background connectivity with salience and frontoparietal networks was greater in mid-life and late-life adults than in younger age groups. Overall, our findings in a lifespan sample are in line with previous observations of age-related network de-differentiation. However, the lack of age effect in default mode network background connectivity suggests that background connectivity indeed represents a complementary measure to resting-state connectivity, providing a differential glance of network connectivity during a particular state.
期刊介绍:
The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience
Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.