{"title":"Brain correlates and functional connectivity linking stress, autonomic dysregulation, and alcohol motivation","authors":"Dongju Seo , Jorge S. Martins , Rajita Sinha","doi":"10.1016/j.ynstr.2024.100645","DOIUrl":"10.1016/j.ynstr.2024.100645","url":null,"abstract":"<div><p>High stress is a key risk factor for alcohol use disorder (AUD) and often accompanied by physiological dysregulation including autonomic nervous system (ANS) disruptions. However, neural mechanisms underlying drinking behaviors associated with stress and ANS disruptions remain unclear. The current study aims to understand neural correlates of stress, ANS disruptions, and subsequent alcohol intake in social drinkers with risky drinking. Using functional magnetic resonance imaging (fMRI), we investigated brain and heart rate (HR) autonomic responses during brief exposure to stress, alcohol, and neutral cues utilizing a well-validated, individualized imagery paradigm in 48 social drinkers of which 26 reported high-risk drinking (HD) while 22 reported low-risk drinking (LD) patterns. Results indicated that HD individuals showed stress and ANS disruptions with increased basal HR, stress-induced craving, and decreased brain response to stress exposure in frontal-striatal regions including the ventromedial prefrontal cortex (VmPFC), anterior cingulate cortex, striatum, insula, and temporal gyrus. Furthermore, whole-brain correlation analysis indicated that greater basal HR was associated with hypoactive VmPFC, but hyperactive medulla oblongata (MOb) responses during stress, with an inverse association between activity in the VmPFC and Mob (whole-brain corrected (WBC), p < 0.05). Functional connectivity with the MOb as a seed to the whole brain indicated that HD versus LD had decreased functional connectivity between the VmPFC and MOb during stress (WBC, p < 0.05). In addition, those with more compromised functional connectivity between the VmPFC and MOb during stress consumed greater amount of alcohol beverage during an experimental alcohol taste test conducted on a separate day, as well as in their self-reported weekly alcohol intake. Together, these results indicate that stress-related, dysfunctional VmPFC control over brain regions of autonomic arousal contributes to greater alcohol motivation and may be a significant risk factor for hazardous alcohol use in non-dependent social drinkers. Findings also suggest that restoring VmPFC integrity in modulating autonomic arousal during stress may be critical for preventing the development of AUD.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000419/pdfft?md5=3a245b2128a6213077f2e1182d6f1cbb&pid=1-s2.0-S2352289524000419-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141136597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tatyana Strekalova , Daniel Radford-Smith , Isobel K. Dunstan , Anna Gorlova , Evgeniy Svirin , Elisaveta Sheveleva , Alisa Burova , Sergey Morozov , Aleksey Lyundup , Gregor Berger , Daniel C. Anthony , Susanne Walitza
{"title":"Omega-3 alleviates behavioral and molecular changes in a mouse model of stress-induced juvenile depression","authors":"Tatyana Strekalova , Daniel Radford-Smith , Isobel K. Dunstan , Anna Gorlova , Evgeniy Svirin , Elisaveta Sheveleva , Alisa Burova , Sergey Morozov , Aleksey Lyundup , Gregor Berger , Daniel C. Anthony , Susanne Walitza","doi":"10.1016/j.ynstr.2024.100646","DOIUrl":"10.1016/j.ynstr.2024.100646","url":null,"abstract":"<div><h3>Introduction</h3><p>Depression is increasingly diagnosed in adolescence, necessitating specific prevention and treatment methods. However, there is a lack of animal models mimicking juvenile depression. This study explores a novel model using ultrasound (US) stress in juvenile mice.</p></div><div><h3>Methods</h3><p>We employed the US stress model in one-month-old C57/BL6 mice, exposing them to alternating ultrasound frequencies (20–25 kHz and 25–45 kHz) for three weeks. These frequencies correspond to negative and neutral emotional states in rodents and can induce a depressive-like syndrome. Concurrently, mice received either an omega-3 food supplement (FS) containing eicosapentaenoic acid (EPA; 0.55 mg/kg/day) and docosahexaenoic acid (DHA; 0.55 mg/kg/day) or a vehicle. Post-stress, we evaluated anxiety- and depressive-like behaviors, blood corticosterone levels, brain expression of pro-inflammatory cytokines, and conducted metabolome analysis of brain, liver and blood plasma.</p></div><div><h3>Results</h3><p>US-exposed mice treated with vehicle exhibited decreased sucrose preference, a sign of anhedonia, a key feature of depression, increased anxiety-like behavior, elevated corticosterone levels, and enhanced TNF and IL-1β gene expression in the brain. In contrast, US-FS mice did not display these changes. Omega-3 supplementation also reduced anxiety-like behavior in non-stressed mice. Metabolomic analysis revealed US-induced changes in brain energy metabolism, with FS increasing brain sphingomyelin. Liver metabolism was affected by both US and FS, while plasma metabolome changes were exclusive to FS. Brain glucose levels correlated positively with activity in anxiety tests.</p></div><div><h3>Conclusion</h3><p>Chronic omega-3 intake counteracted depressive- and anxiety-like behaviors in a US model of juvenile depression in mice. These effects likely stem from the anti-inflammatory properties of the supplement, suggesting potential therapeutic applications in juvenile depression.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000420/pdfft?md5=ae79e6addcc1c3641fd5e4579f15a922&pid=1-s2.0-S2352289524000420-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141144721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melanie L. Schwandt , Eva Cullins , Vijay A. Ramchandani
{"title":"The role of resilience in the relationship between stress and alcohol","authors":"Melanie L. Schwandt , Eva Cullins , Vijay A. Ramchandani","doi":"10.1016/j.ynstr.2024.100644","DOIUrl":"10.1016/j.ynstr.2024.100644","url":null,"abstract":"<div><p>Stress plays a well-documented role in alcohol consumption and the risk for developing alcohol use disorder. The concept of resilience - coping with and successfully adapting to stressful life experiences – has received increasing attention in the field of addiction research in recent decades, and there has been an accumulation of evidence for resilience as a protective factor against problematic alcohol consumption, risk for alcohol use disorder, disorder severity, and relapse. The conceptual and methodological approaches used in the generation of this evidence vary considerably across investigations, however. In light of this, we carried out this review in order to provide a more thorough understanding of the meaning and scope of resilience, what factors contribute to resilience, how it is measured, and how it relates to alcohol-associated phenotypes. Implications for treatment through the use of resilience-building interventions are likewise discussed, as well as implications for future research on the role of resilience in the etiology and clinical outcomes of alcohol use disorder.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000407/pdfft?md5=8641d237fceab69ab6cc4d3b927d56c3&pid=1-s2.0-S2352289524000407-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141023230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Geertsema , M. Kratochvil , R. González-Domínguez , S. Lefèvre-Arbogast , D.Y. Low , A. Du Preez , H. Lee , M. Urpi-Sarda , A. Sánchez-Pla , L. Aigner , C. Samieri , C. Andres-Lacueva , C. Manach , S. Thuret , P.J. Lucassen , A. Korosi
{"title":"Coffee polyphenols ameliorate early-life stress-induced cognitive deficits in male mice","authors":"J. Geertsema , M. Kratochvil , R. González-Domínguez , S. Lefèvre-Arbogast , D.Y. Low , A. Du Preez , H. Lee , M. Urpi-Sarda , A. Sánchez-Pla , L. Aigner , C. Samieri , C. Andres-Lacueva , C. Manach , S. Thuret , P.J. Lucassen , A. Korosi","doi":"10.1016/j.ynstr.2024.100641","DOIUrl":"10.1016/j.ynstr.2024.100641","url":null,"abstract":"<div><p>Stress exposure during the sensitive period of early development has been shown to program the brain and increases the risk to develop cognitive deficits later in life. We have shown earlier that early-life stress (ES) leads to cognitive decline at an adult age, associated with changes in adult hippocampal neurogenesis and neuroinflammation. In particular, ES has been shown to affect neurogenesis rate and the survival of newborn cells later in life as well as microglia, modulating their response to immune or metabolic challenges later in life. Both of these processes possibly contribute to the ES-induced cognitive deficits. Emerging evidence by us and others indicates that early nutritional interventions can protect against these ES-induced effects through nutritional programming. Based on human metabolomics studies, we identified various coffee-related metabolites to be part of a protective molecular signature against cognitive decline in humans. Caffeic and chlorogenic acids are coffee-polyphenols and have been described to have potent anti-oxidant and anti-inflammatory actions. Therefore, we here aimed to test whether supplementing caffeic and chlorogenic acids to the early diet could also protect against ES-induced cognitive deficits. We induced ES via the limited nesting and bedding paradigm in mice from postnatal(P) day 2–9. On P2, mice received a diet to which 0.02% chlorogenic acid (5-O-caffeoylquinic acid) + 0.02% caffeic acid (3′,4′-dihydroxycinnamic acid) were added, or a control diet up until P42. At 4 months of age, all mice were subjected to a behavioral test battery and their brains were stained for markers for microglia and neurogenesis. We found that coffee polyphenols supplemented early in life protected against ES-induced cognitive deficits, potentially this is mediated by the survival of neurons or microglia, but possibly other mechanisms not studied here are mediating the effects. This study provides additional support for the potential of early nutritional interventions and highlights polyphenols as nutrients that can protect against cognitive decline, in particular for vulnerable populations exposed to ES.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000377/pdfft?md5=40d2abee4459a0f3845da654a524f7d4&pid=1-s2.0-S2352289524000377-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141051629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bente M. Hofstra , Emmy E. Hoeksema , Martien JH. Kas , Dineke S. Verbeek
{"title":"Cross-species analysis uncovers the mitochondrial stress response in the hippocampus as a shared mechanism in mouse early life stress and human depression","authors":"Bente M. Hofstra , Emmy E. Hoeksema , Martien JH. Kas , Dineke S. Verbeek","doi":"10.1016/j.ynstr.2024.100643","DOIUrl":"https://doi.org/10.1016/j.ynstr.2024.100643","url":null,"abstract":"<div><p>Depression, or major depressive disorder, poses a significant burden for both individuals and society, affecting approximately 10.8% of the general population. This psychiatric disorder leads to approximately 800,000 deaths per year. A combination of genetic and environmental factors such as early life stress (ELS) increase the risk for development of depression in humans, and a clear role for the hippocampus in the pathophysiology of depression has been shown. Nevertheless, the underlying mechanisms of depression remain poorly understood, resulting in a lack of effective treatments. To better understand the core mechanisms underlying the development of depression, we used a cross-species design to investigate shared hippocampal pathophysiological mechanisms in mouse ELS and human depression. Mice were subjected to ELS by a maternal separation paradigm, followed by RNA sequencing analysis of the adult hippocampal tissue. This identified persistent transcriptional changes linked to mitochondrial stress response pathways, with oxidative phosphorylation and protein folding emerging as the main mechanisms affected by maternal separation. Remarkably, there was a significant overlap between the pathways involved in mitochondrial stress response we observed and publicly available RNAseq data from hippocampal tissue of depressive patients. This cross-species conservation of changes in gene expression of mitochondria-related genes suggests that mitochondrial stress may play a pivotal role in the development of depression. Our findings highlight the potential significance of the hippocampal mitochondrial stress response as a core mechanism underlying the development of depression. Further experimental investigations are required to expand our understanding of these mechanisms.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000390/pdfft?md5=fac82eb9fd44871c7b1ef34015b2f78f&pid=1-s2.0-S2352289524000390-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neuroanatomical markers of social cognition in neglected adolescents","authors":"Catalina Trujillo-Llano , Agustín Sainz-Ballesteros , Fabián Suarez-Ardila , María Luz Gonzalez-Gadea , Agustín Ibáñez , Eduar Herrera , Sandra Baez","doi":"10.1016/j.ynstr.2024.100642","DOIUrl":"https://doi.org/10.1016/j.ynstr.2024.100642","url":null,"abstract":"<div><p>Growing up in neglectful households can impact multiple aspects of social cognition. However, research on neglect's effects on social cognition processes and their neuroanatomical correlates during adolescence is scarce. Here, we aimed to comprehensively assess social cognition processes (recognition of basic and contextual emotions, theory of mind, the experience of envy and <em>Schadenfreude</em> and empathy for pain) and their structural brain correlates in adolescents with legal neglect records within family-based care. First, we compared neglected adolescents (<em>n</em> = 27) with control participants (<em>n</em> = 25) on context-sensitive social cognition tasks while controlling for physical and emotional abuse and executive and intellectual functioning. Additionally, we explored the grey matter correlates of these domains through voxel-based morphometry. Compared to controls, neglected adolescents exhibited lower performance in contextual emotional recognition and theory of mind, higher levels of envy and <em>Schadenfreude</em> and diminished empathy. Physical and emotional abuse and executive or intellectual functioning did not explain these effects. Moreover, social cognition scores correlated with brain volumes in regions subserving social cognition and emotional processing. Our results underscore the potential impact of neglect on different aspects of social cognition during adolescence, emphasizing the necessity for preventive and intervention strategies to address these deficits in this population.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000389/pdfft?md5=e3d05bac79edcdc9e2a125ceab6e447b&pid=1-s2.0-S2352289524000389-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Rosenbaum , Isabell Int-Veen , Hendrik Laicher , Leonie Woloszyn , Ariane Wiegand , Sandra Ladegast , Ute Eßer , Agnes Kroczek , Daniel Sippel , Sebastian Menkor , Glenn Lawyer , Francesco Albasini , Christian Frischholz , Rainald Mössner , Vanessa Nieratschker , Elisabeth J. Leehr , Julian Rubel , Andreas J. Fallgatter , Ann-Christine Ehlis
{"title":"Neural correlates of stress-reactive rumination in depression – The role of childhood trauma and social anxiety","authors":"David Rosenbaum , Isabell Int-Veen , Hendrik Laicher , Leonie Woloszyn , Ariane Wiegand , Sandra Ladegast , Ute Eßer , Agnes Kroczek , Daniel Sippel , Sebastian Menkor , Glenn Lawyer , Francesco Albasini , Christian Frischholz , Rainald Mössner , Vanessa Nieratschker , Elisabeth J. Leehr , Julian Rubel , Andreas J. Fallgatter , Ann-Christine Ehlis","doi":"10.1016/j.ynstr.2024.100640","DOIUrl":"10.1016/j.ynstr.2024.100640","url":null,"abstract":"<div><p>Recent work showed an association of prefrontal dysfunctions in patients with Major Depressive Disorder (MDD) and social stress induced rumination. However, up to date it is unclear which etiological features of MDD might cause prefrontal dysfunctions. In the study at hand, we aimed to replicate recent findings, that showed prefrontal activation alterations during the Trier Social Stress Test (TSST) and subsequently increased stress-reactive rumination in MDD compared to healthy controls. Moreover, we aimed to explore the role of adverse childhood experiences and other clinical variables in this relationship. N = 55 patients currently suffering from MDD and n = 42 healthy controls (HC) underwent the TSST, while cortical activity in areas of the Cognitive Control Network (CCN) was measured via functional near-infrared spectroscopy (fNIRS). The TSST successfully induced a stress reaction (physiologically, as well as indicated by subjective stress ratings) and state rumination in all subjects with moderate to large effect sizes. In comparison to HC, MDD patients showed elevated levels of state rumination with large effect sizes, as well as a typical pattern of reduced cortical oxygenation during stress in the CCN with moderate effect sizes. Self-reported emotional abuse and social anxiety were moderately positively associated with increased stress-reactive rumination. Within the MDD sample, emotional abuse was negatively and social anxiety positively associated with cortical oxygenation within the CCN with moderate to large effect sizes. In conclusion, our results replicate previous findings on MDD-associated prefrontal hypoactivity during stress and extends the research toward specific subtypes of depression.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000365/pdfft?md5=a1d875ff9ce6b9cc8590e86b1628ebad&pid=1-s2.0-S2352289524000365-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141030664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruth L. Allard , Jody Mayfield , Riccardo Barchiesi , Nihal A. Salem , R. Dayne Mayfield
{"title":"Toll-like receptor 7: A novel neuroimmune target to reduce excessive alcohol consumption","authors":"Ruth L. Allard , Jody Mayfield , Riccardo Barchiesi , Nihal A. Salem , R. Dayne Mayfield","doi":"10.1016/j.ynstr.2024.100639","DOIUrl":"https://doi.org/10.1016/j.ynstr.2024.100639","url":null,"abstract":"<div><p>Toll-like receptors (TLRs) are a family of innate immune receptors that recognize molecular patterns in foreign pathogens and intrinsic danger/damage signals from cells. TLR7 is a nucleic acid sensing endosomal TLR that is activated by single-stranded RNAs from microbes or by small noncoding RNAs that act as endogenous ligands. TLR7 signals through the MyD88 adaptor protein and activates the transcription factor interferon regulatory factor 7 (IRF7). TLR7 is found throughout the brain and is highly expressed in microglia, the main immune cells of the brain that have also been implicated in alcohol drinking in mice. Upregulation of <em>TLR7</em> mRNA and protein has been identified in postmortem hippocampus and cortex from AUD subjects that correlated positively with lifetime consumption of alcohol. Similarly, <em>Tlr7</em> and downstream signaling genes were upregulated in rat hippocampal and cortical slice cultures after chronic alcohol exposure and in these regions after chronic binge-like alcohol treatment in mice. In addition, repeated administration of the synthetic TLR7 agonists imiquimod (R837) or resiquimod (R848) increased voluntary alcohol drinking in different rodent models and produced sustained upregulation of IRF7 in the brain. These findings suggest that chronic TLR7 activation may drive excessive alcohol drinking. In the brain, this could occur through increased levels of endogenous TLR7 activators, like microRNAs and Y RNAs. This review explores chronic TLR7 activation as a pathway of dysregulated neuroimmune signaling in AUD and the endogenous small RNA ligands in the brain that could perpetuate innate immune responses and escalate alcohol drinking.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000353/pdfft?md5=67aab2ef581063a7715f2b1eae5940b8&pid=1-s2.0-S2352289524000353-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140880464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rana Banai Tizkar, Lauren McIver, Christian Michael Wood , Angela Charlotte Roberts
{"title":"Subcallosal area 25: Its responsivity to the stress hormone cortisol and its opposing effects on appetitive motivation in marmosets","authors":"Rana Banai Tizkar, Lauren McIver, Christian Michael Wood , Angela Charlotte Roberts","doi":"10.1016/j.ynstr.2024.100637","DOIUrl":"https://doi.org/10.1016/j.ynstr.2024.100637","url":null,"abstract":"<div><p>Aberrant activity in caudal subcallosal anterior cingulate cortex (scACC) is implicated in depression and anxiety symptomatology, with its normalisation a putative biomarker of successful treatment response. The function of scACC in emotion processing and mental health is not fully understood despite its known influence on stress-mediated processes through its rich expression of mineralocorticoid and glucocorticoid receptors. Here we examine the causal interaction between area 25 within scACC (scACC-25) and the stress hormone, cortisol, in the context of anhedonia and anxiety-like behaviour. In addition, the overall role of scACC-25 in hedonic capacity and motivation is investigated under transient pharmacological inactivation and overactivation. The results suggest that a local increase of cortisol in scACC-25 shows a rapid induction of anticipatory anhedonia and increased responsiveness to uncertain threat. Separate inactivation and overactivation of scACC-25 increased and decreased motivation and hedonic capacity, respectively, likely through different underlying mechanisms. Together, these data show that area scACC-25 has a causal role in consummatory and motivational behaviour and produces rapid responses to the stress hormone cortisol, that mediates anhedonia and anxiety-like behaviour.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235228952400033X/pdfft?md5=b1fb4e3f9090692cab92695efec04768&pid=1-s2.0-S235228952400033X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140825298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luisa Herrmann , Johanna Ade , Anne Kühnel , Annina Widmann , Liliana Ramona Demenescu , Meng Li , Nils Opel , Oliver Speck , Martin Walter , Lejla Colic
{"title":"Corrigendum to “Cross-sectional study of retrospective self-reported childhood emotional neglect and inhibitory neurometabolite levels in the pregenual anterior cingulate cortex in adult humans” [Neurobiol. Stress, 25 (July 2023), 100556]","authors":"Luisa Herrmann , Johanna Ade , Anne Kühnel , Annina Widmann , Liliana Ramona Demenescu , Meng Li , Nils Opel , Oliver Speck , Martin Walter , Lejla Colic","doi":"10.1016/j.ynstr.2024.100630","DOIUrl":"10.1016/j.ynstr.2024.100630","url":null,"abstract":"","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000262/pdfft?md5=1f2c81cfe9763f17af1c9e43a53600a8&pid=1-s2.0-S2352289524000262-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140282299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}