Stress resilience is an active and multifactorial process manifested by structural, functional, and molecular changes in synapses

IF 4.3 2区 医学 Q1 NEUROSCIENCES
E. Bączyńska , M. Zaręba-Kozioł , B. Ruszczycki , A. Krzystyniak , T. Wójtowicz , K. Bijata , B. Pochwat , M. Magnowska , M. Roszkowska , I. Figiel , J. Masternak , A. Pytyś , J. Dzwonek , R. Worch , K.H. Olszyński , A.D. Wardak , P. Szymczak , J. Labus , K. Radwańska , P. Jahołkowski , J. Włodarczyk
{"title":"Stress resilience is an active and multifactorial process manifested by structural, functional, and molecular changes in synapses","authors":"E. Bączyńska ,&nbsp;M. Zaręba-Kozioł ,&nbsp;B. Ruszczycki ,&nbsp;A. Krzystyniak ,&nbsp;T. Wójtowicz ,&nbsp;K. Bijata ,&nbsp;B. Pochwat ,&nbsp;M. Magnowska ,&nbsp;M. Roszkowska ,&nbsp;I. Figiel ,&nbsp;J. Masternak ,&nbsp;A. Pytyś ,&nbsp;J. Dzwonek ,&nbsp;R. Worch ,&nbsp;K.H. Olszyński ,&nbsp;A.D. Wardak ,&nbsp;P. Szymczak ,&nbsp;J. Labus ,&nbsp;K. Radwańska ,&nbsp;P. Jahołkowski ,&nbsp;J. Włodarczyk","doi":"10.1016/j.ynstr.2024.100683","DOIUrl":null,"url":null,"abstract":"<div><div>Stress resilience is the ability of neuronal networks to maintain their function despite the stress exposure. Using a mouse model we investigate stress resilience phenomenon. To assess the resilient and anhedonic behavioral phenotypes developed after the induction of chronic unpredictable stress, we quantitatively characterized the structural and functional plasticity of excitatory synapses in the hippocampus using a combination of proteomic, electrophysiological, and imaging methods. Our results indicate that stress resilience is an active and multifactorial process manifested by structural, functional, and molecular changes in synapses. We reveal that chronic stress influences palmitoylation of synaptic proteins, whose profiles differ between resilient and anhedonic animals. The changes in palmitoylation are predominantly related with the glutamate receptor signaling thus affects synaptic transmission and associated structures of dendritic spines. We show that stress resilience is associated with structural compensatory plasticity of the postsynaptic parts of synapses in CA1 subregion of the hippocampus.</div></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"33 ","pages":"Article 100683"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289524000791","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Stress resilience is the ability of neuronal networks to maintain their function despite the stress exposure. Using a mouse model we investigate stress resilience phenomenon. To assess the resilient and anhedonic behavioral phenotypes developed after the induction of chronic unpredictable stress, we quantitatively characterized the structural and functional plasticity of excitatory synapses in the hippocampus using a combination of proteomic, electrophysiological, and imaging methods. Our results indicate that stress resilience is an active and multifactorial process manifested by structural, functional, and molecular changes in synapses. We reveal that chronic stress influences palmitoylation of synaptic proteins, whose profiles differ between resilient and anhedonic animals. The changes in palmitoylation are predominantly related with the glutamate receptor signaling thus affects synaptic transmission and associated structures of dendritic spines. We show that stress resilience is associated with structural compensatory plasticity of the postsynaptic parts of synapses in CA1 subregion of the hippocampus.
压力复原力是一个活跃的多因素过程,表现为突触的结构、功能和分子变化
应激恢复能力是指神经元网络在面临应激时仍能保持其功能的能力。我们利用小鼠模型研究了应激恢复现象。为了评估小鼠在长期不可预测的应激诱导后产生的恢复能力和失调行为表型,我们结合使用了蛋白质组学、电生理学和成像方法,对海马兴奋性突触的结构和功能可塑性进行了定量表征。我们的研究结果表明,应激复原力是一个活跃的多因素过程,表现为突触的结构、功能和分子变化。我们发现,慢性应激会影响突触蛋白的棕榈酰化,而有应激恢复能力的动物和无应激恢复能力的动物的棕榈酰化情况各不相同。棕榈酰化的变化主要与谷氨酸受体信号传导有关,从而影响突触传递和树突棘的相关结构。我们的研究表明,应激恢复能力与海马 CA1 亚区突触后部分的结构补偿可塑性有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurobiology of Stress
Neurobiology of Stress Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
9.40
自引率
4.00%
发文量
74
审稿时长
48 days
期刊介绍: Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal. Basic, translational and clinical research on the following topics as they relate to stress will be covered: Molecular substrates and cell signaling, Genetics and epigenetics, Stress circuitry, Structural and physiological plasticity, Developmental Aspects, Laboratory models of stress, Neuroinflammation and pathology, Memory and Cognition, Motivational Processes, Fear and Anxiety, Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse), Neuropsychopharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信