Parvin Ataie-Kachoie, Samina Badar, David L Morris, Mohammad H Pourgholami
{"title":"Retraction: Minocycline Targets the NF-κB Nexus through Suppression of TGF-β1-TAK1-IκB Signaling in Ovarian Cancer.","authors":"Parvin Ataie-Kachoie, Samina Badar, David L Morris, Mohammad H Pourgholami","doi":"10.1158/1541-7786.MCR-24-0197","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0197","url":null,"abstract":"","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":"22 4","pages":"415"},"PeriodicalIF":5.2,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140336306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yufeng Huang, Ming Gong, Hongmin Chen, Chuangzhong Deng, Xiaojun Zhu, Jiaming Lin, Anfei Huang, Yanyang Xu, Yi Tai, Guohui Song, Huaiyuan Xu, Jinxin Hu, Huixiong Feng, Qinglian Tang, Jinchang Lu, Jin Wang
{"title":"Mass Spectrometry-Based Proteomics Identifies Serpin B9 as a Key Protein in Promoting Bone Metastases in Lung Cancer.","authors":"Yufeng Huang, Ming Gong, Hongmin Chen, Chuangzhong Deng, Xiaojun Zhu, Jiaming Lin, Anfei Huang, Yanyang Xu, Yi Tai, Guohui Song, Huaiyuan Xu, Jinxin Hu, Huixiong Feng, Qinglian Tang, Jinchang Lu, Jin Wang","doi":"10.1158/1541-7786.MCR-23-0310","DOIUrl":"10.1158/1541-7786.MCR-23-0310","url":null,"abstract":"<p><p>Bone metastasis (BM) is one of the most common complications of advanced cancer. Immunotherapy for bone metastasis of lung cancer (LCBM) is not so promising and the immune mechanisms are still unknown. Here, we utilized a model of BM by injecting cancer cells through caudal artery (CA) to screen out a highly bone metastatic derivative (LLC1-BM3) from a murine lung cancer cell line LLC1. Mass spectrometry-based proteomics was performed in LLC1-parental and LLC1-BM3 cells. Combining with prognostic survival information from patients with lung cancer, we identified serpin B9 (SB9) as a key factor in BM. Molecular characterization showed that SB9 overexpression was associated with poor prognosis and high bone metastatic burden in lung cancer. Moreover, SB9 could increase the ability of lung cancer cells to metastasize to the bone. The mechanistic studies revealed that tumor-derived SB9 promoted BM through an immune cell-dependent way by inactivating granzyme B, manifesting with the decreased infiltration of cytotoxic T cells and increased expression level of exhausted markers. A specific SB9-targeting inhibitor [1,3-benzoxazole-6-carboxylic acid (BTCA)] significantly suppressed LCBM in the CA mouse model. This study reveals that SB9 may serve as a therapeutic target and potential prognostic marker for patients with LCBM.</p><p><strong>Implications: </strong>SB9 as a therapeutic target for LCBM.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"402-414"},"PeriodicalIF":4.1,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neekkan Dey, Costas Koumenis, Davide Ruggero, Serge Y Fuchs, J Alan Diehl
{"title":"miR-217 Regulates Normal and Tumor Cell Fate Following Induction of Endoplasmic Reticulum Stress.","authors":"Neekkan Dey, Costas Koumenis, Davide Ruggero, Serge Y Fuchs, J Alan Diehl","doi":"10.1158/1541-7786.MCR-23-0676","DOIUrl":"10.1158/1541-7786.MCR-23-0676","url":null,"abstract":"<p><p>Rapidly proliferating cancer cells require a microenvironment where essential metabolic nutrients like glucose, oxygen, and growth factors become scarce as the tumor volume surpasses the established vascular capacity of the tissue. Limits in nutrient availability typically trigger growth arrest and/or apoptosis to prevent cellular expansion. However, tumor cells frequently co-opt cellular survival pathways thereby favoring cell survival under this environmental stress. The unfolded protein response (UPR) pathway is typically engaged by tumor cells to favor adaptation to stress. PERK, an endoplasmic reticulum (ER) protein kinase and UPR effector is activated in tumor cells and contributes tumor cell adaptation by limiting protein translation and balancing redox stress. PERK also induces miRNAs that contribute to tumor adaptation. miR-211 and miR-216b were previously identified as PERK-ATF4-regulated miRNAs that regulate cell survival. We have identified another PERK-responsive miRNA, miR-217, with increased expression under prolonged ER stress. Key targets of miR-217 are identified as TRPM1, the host gene for miR-211 and EZH2. Evidence is provided that miR-217 expression is essential for the rapid loss of miR-211 in prolonged ER stress and provides a functional link for determining whether cells adapt to stress or commit to apoptosis.</p><p><strong>Implications: </strong>PERK-dependent induction of miR-217 limits accumulation and function of the prosurvival miRNA, miR-211, to establish cell fate and promote cell commitment to apoptosis.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"360-372"},"PeriodicalIF":4.1,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eylem Kulkoyluoglu Cotul, Muhammad Hassan Safdar, Sebastian Juan Paez, Aneesha Kulkarni, Mitchell G Ayers, Hang Lin, Zilin Xianyu, Dorothy Teegarden, Stephen D Hursting, Michael K Wendt
{"title":"FGFR1 Signaling Facilitates Obesity-Driven Pulmonary Outgrowth in Metastatic Breast Cancer.","authors":"Eylem Kulkoyluoglu Cotul, Muhammad Hassan Safdar, Sebastian Juan Paez, Aneesha Kulkarni, Mitchell G Ayers, Hang Lin, Zilin Xianyu, Dorothy Teegarden, Stephen D Hursting, Michael K Wendt","doi":"10.1158/1541-7786.MCR-23-0955","DOIUrl":"10.1158/1541-7786.MCR-23-0955","url":null,"abstract":"<p><p>Survival of dormant, disseminated breast cancer cells contributes to tumor relapse and metastasis. Women with a body mass index greater than 35 have an increased risk of developing metastatic recurrence. Herein, we investigated the effect of diet-induced obesity (DIO) on primary tumor growth and metastatic progression using both metastatic and systemically dormant mouse models of breast cancer. This approach led to increased PT growth and pulmonary metastasis. We developed a novel protocol to induce obesity in Balb/c mice by combining dietary and hormonal interventions with a thermoneutral housing strategy. In contrast to standard housing conditions, ovariectomized Balb/c mice fed a high-fat diet under thermoneutral conditions became obese over a period of 10 weeks, resulting in a 250% gain in fat mass. Obese mice injected with the D2.OR model developed macroscopic pulmonary nodules compared with the dormant phenotype of these cells in mice fed a control diet. Analysis of the serum from obese Balb/c mice revealed increased levels of FGF2 as compared with lean mice. We demonstrate that serum from obese animals, exogenous FGF stimulation, or constitutive stimulation through autocrine and paracrine FGF2 is sufficient to break dormancy and drive pulmonary outgrowth. Blockade of FGFR signaling or specific depletion of FGFR1 prevented obesity-associated outgrowth of the D2.OR model.</p><p><strong>Implications: </strong>Overall, this study developed a novel DIO model that allowed for demonstration of FGF2:FGFR1 signaling as a key molecular mechanism connecting obesity to breakage of systemic tumor dormancy and metastatic progression.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"254-267"},"PeriodicalIF":4.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10923021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139049063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaowen Shao, Yamei Dang, Tingting Zhang, Nan Bai, Jianing Huang, Mengya Guo, Li Sun, Minghe Li, Xiao Sun, Xinran Zhang, Feng Han, Ning Zhang, Hao Zhuang, Yongmei Li
{"title":"LINC00869 Promotes Hepatocellular Carcinoma Metastasis via Protrusion Formation.","authors":"Xiaowen Shao, Yamei Dang, Tingting Zhang, Nan Bai, Jianing Huang, Mengya Guo, Li Sun, Minghe Li, Xiao Sun, Xinran Zhang, Feng Han, Ning Zhang, Hao Zhuang, Yongmei Li","doi":"10.1158/1541-7786.MCR-23-0414","DOIUrl":"10.1158/1541-7786.MCR-23-0414","url":null,"abstract":"<p><p>Coordination of filament assembly and membrane remodeling is required for the directional migration of cancer cells. The Wiskott-Aldrich syndrome protein (WASP) recruits the actin-related protein (ARP) 2/3 complex to assemble branched actin networks. The goal of our study was to assess the potential regulatory role exerted by the novel long noncoding RNA (lncRNA) LINC00869 on hepatocellular carcinoma (HCC) cells. We used HCC cells to overexpress or knockdown LINC00869, analyzed patient data from publicly available databases and Cancer Hospital Affiliated with Zhengzhou University, and used a xenograft mouse model of HCC to study the molecular mechanism associated with LINC00869 expression. We found that high levels of LINC00869 expression were associated with poor prognosis in patients with HCC. Next, we detected an interaction between LINC00869 and both WASP and ARP2 in HCC cells, and observed a modulatory effect of LINC00869 on the phosphorylation of WASP at Y291 and the activity of cell division control protein 42 (CDC42). These modulatory roles were required for WASP/CDC42 activity on F-actin polymerization to enhance membrane protrusion formation and maintain persistent cell polarization. This, in turn, promoted the migration and invasion abilities of HCC cells. Finally, we confirmed the role of LINC00869in vivo, using the tumor xenograft mouse model; and identified a positive correlation between LINC00869 expression levels and the phosphorylation levels of WASP in HCC samples. Overall, our findings suggest a unique mechanism by which LINC00869 orchestrates membrane protrusion during migration and invasion of HCC cells.</p><p><strong>Implications: </strong>LncRNA LINC00869 regulates the activity of CDC42-WASP pathway and positively affects protrusion formation in HCC cells, which expands the current understanding of lncRNA functions as well as gives a better understanding of carcinogenesis.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"282-294"},"PeriodicalIF":4.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71484219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xianglin Zuo, Xuchun Wang, Tingzheng Ma, Shuhan Chen, Pingping Cao, He Cheng, Nan Yang, Xiao Han, Wei Gao, Xiaoyu Liu, Yujie Sun
{"title":"TNFRSF19 within the 13q12.12 Risk Locus Functions as a Lung Cancer Suppressor by Binding Wnt3a to Inhibit Wnt/β-Catenin Signaling.","authors":"Xianglin Zuo, Xuchun Wang, Tingzheng Ma, Shuhan Chen, Pingping Cao, He Cheng, Nan Yang, Xiao Han, Wei Gao, Xiaoyu Liu, Yujie Sun","doi":"10.1158/1541-7786.MCR-23-0109","DOIUrl":"10.1158/1541-7786.MCR-23-0109","url":null,"abstract":"<p><p>Cancer risk loci provide special clues for uncovering pathogenesis of cancers. The TNFRSF19 gene located within the 13q12.12 lung cancer risk locus encodes TNF receptor superfamily member 19 (TNFRSF19) protein and has been proved to be a key target gene of a lung tissue-specific tumor suppressive enhancer, but its functional role in lung cancer pathogenesis remains to be elucidated. Here we showed that the TNFRSF19 gene could protect human bronchial epithelial Beas-2B cells from pulmonary carcinogen nicotine-derived nitrosamine ketone (NNK)-induced malignant transformation. Knockout of the TNFRSF19 significantly increased NNK-induced colony formation rate on soft agar. Moreover, TNFRSF19 expression was significantly reduced in lung cancer tissues and cell lines. Restoration of TNFRSF19 expression in A549 lung cancer cell line dramatically suppressed the tumor formation in xenograft mouse model. Interestingly, the TNFRSF19 protein that is an orphan membrane receptor could compete with LRP6 to bind Wnt3a, thereby inhibiting the Wnt/β-catenin signaling pathway that is required for NNK-induced malignant transformation as indicated by protein pulldown, site mutation, and fluorescence energy resonance transfer experiments. Knockout of the TNFRSF19 enhanced LRP6-Wnt3a interaction, promoting β-catenin nucleus translocation and the downstream target gene expression, and thus sensitized the cells to NNK carcinogen. In conclusion, our study demonstrated that the TNFRSF19 inhibited lung cancer carcinogenesis by competing with LRP6 to combine with Wnt3a to inhibit the Wnt/β-catenin signaling pathway.</p><p><strong>Implications: </strong>These findings revealed a novel anti-lung cancer mechanism, highlighting the special significance of TNFRSF19 gene within the 13q12.12 risk locus in lung cancer pathogenesis.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"227-239"},"PeriodicalIF":4.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138478171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ivana Barravecchia, Jennifer M Lee, Jason Manassa, Brian Magnuson, Sarah F Ferris, Sophia Cavanaugh, Nina G Steele, Carlos E Espinoza, Craig J Galban, Nithya Ramnath, Timothy L Frankel, Marina Pasca di Magliano, Stefanie Galban
{"title":"Modeling Molecular Pathogenesis of Idiopathic Pulmonary Fibrosis-Associated Lung Cancer in Mice.","authors":"Ivana Barravecchia, Jennifer M Lee, Jason Manassa, Brian Magnuson, Sarah F Ferris, Sophia Cavanaugh, Nina G Steele, Carlos E Espinoza, Craig J Galban, Nithya Ramnath, Timothy L Frankel, Marina Pasca di Magliano, Stefanie Galban","doi":"10.1158/1541-7786.MCR-23-0480","DOIUrl":"10.1158/1541-7786.MCR-23-0480","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is characterized by progressive, often fatal loss of lung function due to overactive collagen production and tissue scarring. Patients with IPF have a sevenfold-increased risk of developing lung cancer. The COVID-19 pandemic has increased the number of patients with lung diseases, and infection can worsen prognoses for those with chronic lung diseases and disease-associated cancer. Understanding the molecular pathogenesis of IPF-associated lung cancer is imperative for identifying diagnostic biomarkers and targeted therapies that will facilitate prevention of IPF and progression to lung cancer. To understand how IPF-associated fibroblast activation, matrix remodeling, epithelial-to-mesenchymal transition (EMT), and immune modulation influences lung cancer predisposition, we developed a mouse model to recapitulate the molecular pathogenesis of pulmonary fibrosis-associated lung cancer using the bleomycin and Lewis lung carcinoma models. We demonstrate that development of pulmonary fibrosis-associated lung cancer is likely linked to increased abundance of tumor-associated macrophages and a unique gene signature that supports an immune-suppressive microenvironment through secreted factors. Not surprisingly, preexisting fibrosis provides a pre-metastatic niche and results in augmented tumor growth, and tumors associated with bleomycin-induced fibrosis are characterized by a dramatic loss of cytokeratin expression, indicative of EMT.</p><p><strong>Implications: </strong>This characterization of tumors associated with lung diseases provides new therapeutic targets that may aid in the development of treatment paradigms for lung cancer patients with preexisting pulmonary diseases.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"295-307"},"PeriodicalIF":4.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Himanshu Savardekar, Carter Allen, Hyeongseon Jeon, Jianying Li, Dionisia Quiroga, Emily Schwarz, Richard C Wu, Sara Zelinskas, Gabriella Lapurga, Alexander Abreo, Andrew Stiff, Jami Shaffer, Bradley W Blaser, Matthew Old, Robert Wesolowski, Gang Xin, Kari L Kendra, Dongjun Chung, William E Carson
{"title":"Single-Cell RNA-Seq Analysis of Patient Myeloid-Derived Suppressor Cells and the Response to Inhibition of Bruton's Tyrosine Kinase.","authors":"Himanshu Savardekar, Carter Allen, Hyeongseon Jeon, Jianying Li, Dionisia Quiroga, Emily Schwarz, Richard C Wu, Sara Zelinskas, Gabriella Lapurga, Alexander Abreo, Andrew Stiff, Jami Shaffer, Bradley W Blaser, Matthew Old, Robert Wesolowski, Gang Xin, Kari L Kendra, Dongjun Chung, William E Carson","doi":"10.1158/1541-7786.MCR-22-0572","DOIUrl":"10.1158/1541-7786.MCR-22-0572","url":null,"abstract":"<p><p>Myeloid-derived suppressor cell (MDSC) levels are elevated in patients with cancer and contribute to reduced efficacy of immune checkpoint therapy. MDSC express Bruton's tyrosine kinase (BTK) and BTK inhibition with ibrutinib, an FDA-approved irreversible inhibitor of BTK, leads to reduced MDSC expansion/function in mice and significantly improves the antitumor activity of anti-PD-1 antibody treatments. Single-cell RNA sequencing (scRNA-seq) was used to characterize the effect of ibrutinib on gene expression of fluorescence-activated cell sorting-enriched MDSC from patients with different cancer types [breast, melanoma, head and neck squamous cell cancer (HNSCC)]. Melanoma patient MDSC were treated in vitro for 4 hours with 5 μmol/L ibrutinib or DMSO, processed for scRNA-seq using the Chromium 10× Genomics platform, and analyzed via the Seurat v4 standard integrative workflow. Baseline gene expression of MDSC from patients with breast, melanoma, and HNSCC cancer revealed similarities among the top expressed genes. In vitro ibrutinib treatment of MDSC from patients with melanoma resulted in significant changes in gene expression. GBP1, IL-1β, and CXCL8 were among the top downregulated genes whereas RGS2 and ABHD5 were among the top upregulated genes (P < 0.001). Double positive CD14+CD15+ MDSC and PMN-MDSC responded similarly to BTK inhibition and exhibited more pronounced gene changes compared with early MDSC and M-MDSC. Pathway analysis revealed significantly downregulated pathways including TREM1, nitric oxide signaling, and IL-6 signaling (P < 0.004).</p><p><strong>Implications: </strong>scRNA-seq revealed characteristic gene expression patterns for MDSC from different patients with cancer and BTK inhibition led to the downregulation of multiple genes and pathways important to MDSC function and migration.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"308-321"},"PeriodicalIF":4.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10922705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eranga R Balasooriya, Deshan Madhusanka, Tania P López-Palacios, Riley J Eastmond, Dasun Jayatunge, Jake J Owen, Jack S Gashler, Christina M Egbert, Chanaka Bulathsinghalage, Lu Liu, Stephen R Piccolo, Joshua L Andersen
{"title":"Integrating Clinical Cancer and PTM Proteomics Data Identifies a Mechanism of ACK1 Kinase Activation.","authors":"Eranga R Balasooriya, Deshan Madhusanka, Tania P López-Palacios, Riley J Eastmond, Dasun Jayatunge, Jake J Owen, Jack S Gashler, Christina M Egbert, Chanaka Bulathsinghalage, Lu Liu, Stephen R Piccolo, Joshua L Andersen","doi":"10.1158/1541-7786.MCR-23-0153","DOIUrl":"10.1158/1541-7786.MCR-23-0153","url":null,"abstract":"<p><p>Beyond the most common oncogenes activated by mutation (mut-drivers), there likely exists a variety of low-frequency mut-drivers, each of which is a possible frontier for targeted therapy. To identify new and understudied mut-drivers, we developed a machine learning (ML) model that integrates curated clinical cancer data and posttranslational modification (PTM) proteomics databases. We applied the approach to 62,746 patient cancers spanning 84 cancer types and predicted 3,964 oncogenic mutations across 1,148 genes, many of which disrupt PTMs of known and unknown function. The list of putative mut-drivers includes established drivers and others with poorly understood roles in cancer. This ML model is available as a web application. As a case study, we focused the approach on nonreceptor tyrosine kinases (NRTK) and found a recurrent mutation in activated CDC42 kinase-1 (ACK1) that disrupts the Mig6 homology region (MHR) and ubiquitin-association (UBA) domains on the ACK1 C-terminus. By studying these domains in cultured cells, we found that disruption of the MHR domain helps activate the kinase while disruption of the UBA increases kinase stability by blocking its lysosomal degradation. This ACK1 mutation is analogous to lymphoma-associated mutations in its sister kinase, TNK1, which also disrupt a C-terminal inhibitory motif and UBA domain. This study establishes a mut-driver discovery tool for the research community and identifies a mechanism of ACK1 hyperactivation shared among ACK family kinases.</p><p><strong>Implications: </strong>This research identifies a potentially targetable activating mutation in ACK1 and other possible oncogenic mutations, including PTM-disrupting mutations, for further study.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"137-151"},"PeriodicalIF":4.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41237158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mary Oluwadamilola Haastrup, Kunwar Somesh Vikramdeo, Shashi Anand, Mohammad Aslam Khan, James Elliot Carter, Seema Singh, Ajay Pratap Singh, Santanu Dasgupta
{"title":"Mitochondrial Translocase TOMM22 Is Overexpressed in Pancreatic Cancer and Promotes Aggressive Growth by Modulating Mitochondrial Protein Import and Function.","authors":"Mary Oluwadamilola Haastrup, Kunwar Somesh Vikramdeo, Shashi Anand, Mohammad Aslam Khan, James Elliot Carter, Seema Singh, Ajay Pratap Singh, Santanu Dasgupta","doi":"10.1158/1541-7786.MCR-23-0138","DOIUrl":"10.1158/1541-7786.MCR-23-0138","url":null,"abstract":"<p><p>Pancreatic cancer has the worst prognosis among all cancers, underscoring the need for improved management strategies. Dysregulated mitochondrial function is a common feature in several malignancies, including pancreatic cancer. Although mitochondria have their own genome, most mitochondrial proteins are nuclear-encoded and imported by a multi-subunit translocase of the outer mitochondrial membrane (TOMM). TOMM22 is the central receptor of the TOMM complex and plays a role in complex assembly. Pathobiologic roles of TOMM subunits remain largely unexplored. Here we report that TOMM22 protein/mRNA is overexpressed in pancreatic cancer and inversely correlated with disease outcomes. TOMM22 silencing decreased, while its forced overexpression promoted the growth and malignant potential of the pancreatic cancer cells. Increased import of several mitochondrial proteins, including those associated with mitochondrial respiration, was observed upon TOMM22 overexpression which was associated with increased RCI activity, NAD+/NADH ratio, oxygen consumption rate, membrane potential, and ATP production. Inhibition of RCI activity decreased ATP levels and suppressed pancreatic cancer cell growth and malignant behavior confirming that increased TOMM22 expression mediated the phenotypic changes via its modulation of mitochondrial protein import and functions. Altogether, these results suggest that TOMM22 overexpression plays a significant role in pancreatic cancer pathobiology by altering mitochondrial protein import and functions.</p><p><strong>Implications: </strong>TOMM22 bears potential for early diagnostic/prognostic biomarker development and therapeutic targeting for better management of patients with pancreatic cancer.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"197-208"},"PeriodicalIF":4.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50158433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}