Daryl Griffin, Robbie Carson, Debbie Moss, Tamas Sessler, Deborah Lavin, Vijay K Tiwari, Shivaali Karelia, Richard Kennedy, Kienan I Savage, Simon McDade, Adam Carie, Jim Pankovich, Mark Bazett, Sandra Van Schaeybroeck
{"title":"Ruthenium Drug BOLD-100 Regulates BRAFMT Colorectal Cancer Cell Apoptosis through AhR/ROS/ATR Signaling Axis Modulation.","authors":"Daryl Griffin, Robbie Carson, Debbie Moss, Tamas Sessler, Deborah Lavin, Vijay K Tiwari, Shivaali Karelia, Richard Kennedy, Kienan I Savage, Simon McDade, Adam Carie, Jim Pankovich, Mark Bazett, Sandra Van Schaeybroeck","doi":"10.1158/1541-7786.MCR-24-0151","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with class I V600EBRAF-mutant (MT) colorectal cancer exhibit a poor prognosis, and their response to combined anti-BRAF/EGFR inhibition remains limited. An unmet need exits for further understanding the biology of V600EBRAFMT colorectal cancer. We used differential gene expression of BRAFWT and MT colorectal cancer cells to identify pathways underpinning BRAFMT colorectal cancer. We tested a panel of molecularly/genetically subtyped colorectal cancer cells for their sensitivity to the unfolded protein response (UPR) activator BOLD-100. To identify novel combination strategies for BOLD-100, we performed RNA sequencing and high-throughput drug screening. Pathway enrichment analysis identified significant enrichment of the UPR and DNA repair pathways in BRAFMT colorectal cancer. We found that oncogenic BRAF plays a crucial role in mediating the response to BOLD-100. Using a systems biology approach, we identified V600EBRAFMT-dependent activation of the replication stress response kinase ataxia telangiectasia and Rad3-related (ATR) as a key mediator of resistance to BOLD-100. Further analysis identified acute increases in BRAFMT-dependent-reactive oxygen species levels following treatment with BOLD-100, which promoted ATR/CHK1 activation and apoptosis. Furthermore, activation of reactive oxygen species/ATR/CHK1 following BOLD-100 was mediated through the AhR transcription factor and CYP1A1. Importantly, pharmacological blockade of this resistance pathway with ATR inhibitors synergistically increased BOLD-100-induced apoptosis and growth inhibition in BRAFMT models. These results highlight a possible novel therapeutic opportunity for BRAFMT colorectal cancer. Implications: BOLD-100 induces BRAFMT-dependent replication stress, and targeted strategies against replication stress (e.g., by using ATR inhibitors) in combination with BOLD-100 may serve as a potential novel therapeutic strategy for clinically aggressive BRAFMT colorectal cancer.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"1088-1101"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0151","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Patients with class I V600EBRAF-mutant (MT) colorectal cancer exhibit a poor prognosis, and their response to combined anti-BRAF/EGFR inhibition remains limited. An unmet need exits for further understanding the biology of V600EBRAFMT colorectal cancer. We used differential gene expression of BRAFWT and MT colorectal cancer cells to identify pathways underpinning BRAFMT colorectal cancer. We tested a panel of molecularly/genetically subtyped colorectal cancer cells for their sensitivity to the unfolded protein response (UPR) activator BOLD-100. To identify novel combination strategies for BOLD-100, we performed RNA sequencing and high-throughput drug screening. Pathway enrichment analysis identified significant enrichment of the UPR and DNA repair pathways in BRAFMT colorectal cancer. We found that oncogenic BRAF plays a crucial role in mediating the response to BOLD-100. Using a systems biology approach, we identified V600EBRAFMT-dependent activation of the replication stress response kinase ataxia telangiectasia and Rad3-related (ATR) as a key mediator of resistance to BOLD-100. Further analysis identified acute increases in BRAFMT-dependent-reactive oxygen species levels following treatment with BOLD-100, which promoted ATR/CHK1 activation and apoptosis. Furthermore, activation of reactive oxygen species/ATR/CHK1 following BOLD-100 was mediated through the AhR transcription factor and CYP1A1. Importantly, pharmacological blockade of this resistance pathway with ATR inhibitors synergistically increased BOLD-100-induced apoptosis and growth inhibition in BRAFMT models. These results highlight a possible novel therapeutic opportunity for BRAFMT colorectal cancer. Implications: BOLD-100 induces BRAFMT-dependent replication stress, and targeted strategies against replication stress (e.g., by using ATR inhibitors) in combination with BOLD-100 may serve as a potential novel therapeutic strategy for clinically aggressive BRAFMT colorectal cancer.
期刊介绍:
Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.