Molecular Cancer Research最新文献

筛选
英文 中文
The Complex Regulation of Cytokinesis upon Abscission Checkpoint Activation. 脱落检查点激活时对细胞分裂的复杂调控。
IF 4.1 2区 医学
Molecular Cancer Research Pub Date : 2024-10-02 DOI: 10.1158/1541-7786.MCR-24-0365
Paulius Gibieža, Vilma Petrikaitė
{"title":"The Complex Regulation of Cytokinesis upon Abscission Checkpoint Activation.","authors":"Paulius Gibieža, Vilma Petrikaitė","doi":"10.1158/1541-7786.MCR-24-0365","DOIUrl":"10.1158/1541-7786.MCR-24-0365","url":null,"abstract":"<p><p>Cytokinetic abscission is a crucial process that guides the separation of daughter cells at the end of each cell division. This process involves the cleavage of the intercellular bridge, which connects the newly formed daughter cells. Over the years, researchers have identified several cellular contributors and intracellular processes that influence the spatial and temporal distribution of the cytoskeleton during cytokinetic abscission. This review presents the most important scientific discoveries that allow activation of the abscission checkpoint, ensuring a smooth and successful separation of a single cell into two cells during cell division. Here, we describe different factors, such as abscission checkpoint, ICB tension, nuclear pore defects, DNA replication stress, chromosomal stability, and midbody proteins, which play a role in the regulation and correct timing of cytokinetic abscission. Furthermore, we explore the downsides associated with the dysregulation of abscission, including its negative impact on cells and the potential to induce tumor formation in humans. Finally, we propose a novel factor for improving cancer therapy and give future perspectives in this research field.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ubiquitin Ligase TRIM22 Inhibits Ovarian Cancer Malignancy via TCF4 Degradation. 泛素连接酶TRIM22通过TCF4降解抑制卵巢癌恶变
IF 4.1 2区 医学
Molecular Cancer Research Pub Date : 2024-10-02 DOI: 10.1158/1541-7786.MCR-23-0962
Tao Tao, Yongqi Zhang, Chunyan Guan, Shuxiang Wang, Xiaoli Liu, Min Wang
{"title":"Ubiquitin Ligase TRIM22 Inhibits Ovarian Cancer Malignancy via TCF4 Degradation.","authors":"Tao Tao, Yongqi Zhang, Chunyan Guan, Shuxiang Wang, Xiaoli Liu, Min Wang","doi":"10.1158/1541-7786.MCR-23-0962","DOIUrl":"10.1158/1541-7786.MCR-23-0962","url":null,"abstract":"<p><p>Ovarian cancer is one of the most common malignancies in women. Tripartite motif-containing protein 22 (TRIM22) plays an important role in the initiation and progression of malignant tumors. Similarly, the transcription factor 4 (TCF4) is an essential factor involved in the initiation and progression of many tumors. However, it is still unclear whether TRIM22 can affect TCF4 in ovarian cancer. Therefore, this study aims to investigate the mechanism related to TRIM22 and TCF4 in ovarian cancer. TRIM22 protein and mRNA levels were analyzed in samples from clinical and cell lines. The effects of TRIM22 knockdown and overexpression on cell proliferation, colony formation, migration, invasion, and related biomarkers were evaluated. In addition, the role of ubiquitination-mediated degradation of TCF4 was investigated by qRT-PCR and Western blotting. The association between TRIM22 and TCF4 was evaluated by Western blotting, coimmunoprecipitation, proliferation, colony formation, invasion, migration, and related biomarkers. The results showed that the expression of TRIM22 was minimal in ovarian cancer tissues. Furthermore, upregulation of TRIM22 significantly inhibited ovarian cancer cell proliferation, colony formation, migration, and invasion. In addition, TRIM22 was observed to regulate the degradation of TCF4 through the ubiquitination pathway. TCF4 can reverse the effects of TRIM22 on proliferation, colony formation, migration, and invasion in ovarian cancer cells. TRIM22-mediated ubiquitination of TCF4 at K48 is facilitated by the RING domain. Implications: In conclusion, ubiquitination of TCF4 protein in ovarian cancer is regulated by TRIM22, which has the potential to limit the proliferation, migration, and invasion of ovarian cancer.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA-Binding Protein Lin28B Promotes Chronic Myeloid Leukemia Blast Crisis by Transcriptionally Upregulating miR-181d. RNA结合蛋白Lin28B通过转录上调miR-181d促进慢性髓性白血病爆发危象。
IF 4.1 2区 医学
Molecular Cancer Research Pub Date : 2024-10-02 DOI: 10.1158/1541-7786.MCR-23-0928
Minran Zhou, Xiaolin Yin, Lu Zhang, Zelong Cui, Xinwen Jiang, Qingli Ji, Sai Ma, Chunyan Chen
{"title":"RNA-Binding Protein Lin28B Promotes Chronic Myeloid Leukemia Blast Crisis by Transcriptionally Upregulating miR-181d.","authors":"Minran Zhou, Xiaolin Yin, Lu Zhang, Zelong Cui, Xinwen Jiang, Qingli Ji, Sai Ma, Chunyan Chen","doi":"10.1158/1541-7786.MCR-23-0928","DOIUrl":"10.1158/1541-7786.MCR-23-0928","url":null,"abstract":"<p><p>The blast crisis (BC) of chronic myeloid leukemia (CML) has poor efficacy against existing treatments and extremely short survival. However, the molecular mechanism of CML-chronic phase (CP) transformation to CML-BC is not yet fully understood. Here, we show that Lin28B, an RNA-binding protein, acted as an activator enhancing the transformation to CML-BC by mediating excessive cell proliferation. The level of Lin28B expression was apparently elevated in patients with CML-BC compared with newly diagnosed patients with CML-CP. The overexpression of Lin28B promoted the proliferation of leukemia cells. Mechanistically, we identified Lin28B as a DNA-binding protein by binding to the promoter region of miR-181d and upregulating its expression, which inhibited the expression of programmed cell death 4 (PDCD4) by binding to the PDCD4 3'UTR region, thereby enhancing the proliferation of CML cells. Overall, the \"Lin28B-miR-181d-PDCD4\" regulatory axis promoted CML blast crisis. Implications: Our findings highlight the oncogenic role of Lin28B in CML blast crisis, acting as a DNA-binding protein that transcriptionally upregulates miR-181d expression.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactate Induces Tumor Progression via LAR Motif-Dependent Yin-Yang 1 Degradation. 乳酸通过依赖于 LAR motif 的阴阳 1 降解诱导肿瘤进展。
IF 4.1 2区 医学
Molecular Cancer Research Pub Date : 2024-10-02 DOI: 10.1158/1541-7786.MCR-23-0583
Shujuan Du, Xiaoting Chen, Xiao Han, Yuyan Wang, Dan Yu, Ying Li, Caixia Zhu, Yin Tong, Shujun Gao, Junwen Wang, Fang Wei, Qiliang Cai
{"title":"Lactate Induces Tumor Progression via LAR Motif-Dependent Yin-Yang 1 Degradation.","authors":"Shujuan Du, Xiaoting Chen, Xiao Han, Yuyan Wang, Dan Yu, Ying Li, Caixia Zhu, Yin Tong, Shujun Gao, Junwen Wang, Fang Wei, Qiliang Cai","doi":"10.1158/1541-7786.MCR-23-0583","DOIUrl":"10.1158/1541-7786.MCR-23-0583","url":null,"abstract":"<p><p>The metabolic reprogramming of aerobic glycolysis contributes to tumorigenesis. High plasma lactate is a critical regulator in the development of many human malignancies; however, the underlying molecular mechanisms of cancer progression in response to lactate (LA) remain elusive. Here, we show that the reduction of Yin-Yang 1 (YY1) expression correlated with high LA commonly occurs in various cancer cell types, including B-lymphoma and cervical cancer. Mechanistically, LA induces YY1 nuclear export and degradation via HSP70-mediated autophagy adjacent to mitochondria in a histidine (His)-rich LA-responsive (LAR) motif-dependent manner. The mutation of the LAR motif blocks LA-mediated YY1 cytoplasmic accumulation and in turn enhances cell apoptosis. Furthermore, low expression of YY1 promotes colony formation, invasion, angiogenesis, and growth of cancer cells in response to LA in vitro and in vivo using a murine xenograft model. Taken together, our findings reveal a key LAR element and may serve as therapeutic target for intervening cancer progression. Implications: We have shown that lactate can induce YY1 degradation via its His-rich LAR motif and low expression of YY1 promotes cancer cell progression in response to lactate, leading to better prediction of YY1 targeting therapy.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141420015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Wnt Signaling Pathway Aberrations in Metastatic Prostate Cancer. 转移性前列腺癌中 Wnt 信号通路畸变的特征。
IF 4.1 2区 医学
Molecular Cancer Research Pub Date : 2024-10-02 DOI: 10.1158/1541-7786.MCR-24-0395
Sharon H Choi, Elizabeth Pan, Andrew Elliott, Himisha Beltran, Justine Panian, Christina Jamieson, Aditya Bagrodia, Brent Rose, Daniel Herchenhorn, Elisabeth Heath, Chadi Nabhan, Emmanuel S Antonarakis, Rana R McKay
{"title":"Characterization of Wnt Signaling Pathway Aberrations in Metastatic Prostate Cancer.","authors":"Sharon H Choi, Elizabeth Pan, Andrew Elliott, Himisha Beltran, Justine Panian, Christina Jamieson, Aditya Bagrodia, Brent Rose, Daniel Herchenhorn, Elisabeth Heath, Chadi Nabhan, Emmanuel S Antonarakis, Rana R McKay","doi":"10.1158/1541-7786.MCR-24-0395","DOIUrl":"10.1158/1541-7786.MCR-24-0395","url":null,"abstract":"<p><p>Wnt (wingless-type) signaling pathway (WSP) alterations have been identified in patients with prostate cancer and are implicated in disease progression and hormonal resistance. In this study, we utilized a multi-institutional dataset to characterize molecular alterations in the canonical and noncanonical WSPs in prostate cancer. Patients with prostate cancer who underwent tissue-based genomic sequencing were investigated. Tumors with somatic activating mutations in CTNNB1 or RSPO2 or inactivating mutations in either APC or RNF43 were characterized as having aberrant canonical Wnt signaling (WSP-activated). Overall survival analyses were restricted to microsatellite-stable (MSS) tumors lacking RNF43 G659fs* mutations. We also investigated noncanonical WSP by evaluation of ROR1, ROR2, and WNT5 in WSP-activated versus WSP wild-type (WSP-WT) tumors. Of 4,138 prostate cancer samples, 3,684 were MSS. Among MSS tumors, 42.4% were from metastatic sites, of which 19.1% were WSP activated, and 57.6% were from the prostate, of which 10.1% were WSP activated. WSP-activated tumors were more prevalent in metastatic sites than in primary prostate cancer. WSP-activated prostate cancer exhibited more SPOP mutations and higher expression of canonical WSP activators than WSP-WT tumors. ROR1 gene expression was elevated in WSP-activated tumors from both primary and metastatic sites. M2 macrophages predominated the tumor microenvironment in WSP-activated tumors. There was no significant difference in overall survival between patients with WSP-activated and WSP-WT prostate cancer. WSP-activated prostate cancer demonstrated a more immunosuppressed tumor microenvironment and a pronounced upregulation of ROR1 gene expression, underscoring its potential involvement in the crosstalk between canonical and noncanonical WSPs. Implications: Our findings may provide a rationale for developing novel therapeutic strategies targeting Wnt-activated prostate cancer.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NAPRT Silencing in FH-Deficient Renal Cell Carcinoma Confers Therapeutic Vulnerabilities via NAD+ Depletion. FH缺陷肾细胞癌中的NAPRT沉默通过NAD+耗竭产生治疗脆弱性。
IF 4.1 2区 医学
Molecular Cancer Research Pub Date : 2024-10-02 DOI: 10.1158/1541-7786.MCR-23-1003
Katelyn J Noronha, Karlie N Lucas, Sateja Paradkar, Joseph Edmonds, Sam Friedman, Matthew A Murray, Samantha Liu, Dipti P Sajed, Chana Sachs, Josh Spurrier, Mitch Raponi, Jiayu Liang, Hao Zeng, Ranjini K Sundaram, Brian Shuch, Juan C Vasquez, Ranjit S Bindra
{"title":"NAPRT Silencing in FH-Deficient Renal Cell Carcinoma Confers Therapeutic Vulnerabilities via NAD+ Depletion.","authors":"Katelyn J Noronha, Karlie N Lucas, Sateja Paradkar, Joseph Edmonds, Sam Friedman, Matthew A Murray, Samantha Liu, Dipti P Sajed, Chana Sachs, Josh Spurrier, Mitch Raponi, Jiayu Liang, Hao Zeng, Ranjini K Sundaram, Brian Shuch, Juan C Vasquez, Ranjit S Bindra","doi":"10.1158/1541-7786.MCR-23-1003","DOIUrl":"10.1158/1541-7786.MCR-23-1003","url":null,"abstract":"<p><p>Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is caused by loss of function mutations in fumarate hydratase (FH) and results in an aggressive subtype of renal cell carcinoma with limited treatment options. Loss of FH leads to accumulation of fumarate, an oncometabolite that disrupts multiple cellular processes and drives tumor progression. High levels of fumarate inhibit alpha ketoglutarate-dependent dioxygenases, including the ten-eleven translocation (TET) enzymes, and can lead to global DNA hypermethylation. Here, we report patterns of hypermethylation in FH-mutant cell lines and tumor samples are associated with the silencing of nicotinate phosphoribosyl transferase (NAPRT), a rate-limiting enzyme in the Preiss-Handler pathway of NAD+ biosynthesis, in a subset of HLRCC cases. NAPRT is hypermethylated at a CpG island in the promoter in cell line models and patient samples, resulting in loss of NAPRT expression. We find that FH-deficient RCC models with loss of NAPRT expression, as well as other oncometabolite-producing cancer models that silence NAPRT, are extremely sensitive to nicotinamide phosphoribosyl transferase inhibitors (NAMPTi). NAPRT silencing was also associated with synergistic tumor cell killing with PARP inhibitors and NAMPTis, which was associated with effects on PAR-mediated DNA repair. Overall, our findings indicate that NAPRT silencing can be targeted in oncometabolite-producing cancers and elucidates how oncometabolite-associated hypermethylation can impact diverse cellular processes and lead to therapeutically relevant vulnerabilities in cancer cells. Implications: NAPRT is a novel biomarker for targeting NAD+ metabolism in FH-deficient HLRCCs with NAMPTis alone and targeting DNA repair processes with the combination of NAMPTis and PARP inhibitors.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gram-negative microflora dysbiosis facilitates tumor progression and immune evasion by activating CCL3/CCL5-CCR1-MAPK-PD-L1 pathway in esophageal squamous cell carcinoma. 革兰氏阴性微生物菌群失调通过激活食管鳞状细胞癌中的 CCL3/CCL5-CCR1-MAPK-PD-L1 通路促进肿瘤进展和免疫逃避
IF 4.1 2区 医学
Molecular Cancer Research Pub Date : 2024-10-01 DOI: 10.1158/1541-7786.MCR-24-0451
Huiqin Yang, Jiahao Cai, Xiao Long Huang, Cheng Zhan, Chunlai Lu, Jie Gu, Teng Ma, Hongyu Zhang, Tao Cheng, Fengkai Xu, Di Ge
{"title":"Gram-negative microflora dysbiosis facilitates tumor progression and immune evasion by activating CCL3/CCL5-CCR1-MAPK-PD-L1 pathway in esophageal squamous cell carcinoma.","authors":"Huiqin Yang, Jiahao Cai, Xiao Long Huang, Cheng Zhan, Chunlai Lu, Jie Gu, Teng Ma, Hongyu Zhang, Tao Cheng, Fengkai Xu, Di Ge","doi":"10.1158/1541-7786.MCR-24-0451","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0451","url":null,"abstract":"<p><p>Gram-negative micro-flora dysbiosis occurs in multiple digestive tumors and is found to be the dominant micro-flora in esophageal squamous cell carcinoma (ESCC) micro-environment. The continuous stimulation of G- bacterium metabolites may cause tumorigenesis and reshape the micro-immune environment in ESCC. However, the mechanism of G- bacilli causing immune evasion in ESCC remains underexplored. We identified CC Chemokine receptor 1 (CCR1) as a tumor-indicating gene in ESCC. Interestingly, expression levels of CCR1 and PD-L1 were mutually up regulated after G- bacilli metabolites lipopolysaccharide (LPS) stimulation. Firstly, we found CCR1 high expression level to be associated with poor overall survival in ESCC. Importantly, we found that high level expression of CCR1 up-regulated PD-L1 expression by activating MAPK phosphorylation in ESCC and induced tumor malignant behavior. Finally, we found that T cells exhaustion and cytotoxicity suppression were associated with CCR1 expression in ESCC, which were decreased after CCR1 inhibiting. Our work identifies CCR1 as a potential immune check point regulator of PD-L1 and may cause T cell exhaustion and cytotoxicity suppression in ESCC micro-environment and highlights the potential value of CCR1 as therapeutic target of immunotherapy. Implications: The esophageal microbial environment and its metabolites significantly affect the outcome of immunotherapy for ESCC.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defining splicing factor requirements for androgen receptor variant synthesis in advanced prostate cancer. 确定晚期前列腺癌中雄激素受体变体合成的剪接因子要求。
IF 4.1 2区 医学
Molecular Cancer Research Pub Date : 2024-09-30 DOI: 10.1158/1541-7786.MCR-23-0958
Laura Walker, Ruaridh Duncan, Beth Adamson, Hannah Kendall, Nicholas Brittain, Sara Luzzi, Dominic Jones, Lewis Chaytor, Samantha Peel, Claire Crafter, Daniel J O'Neill, Luke Gaughan
{"title":"Defining splicing factor requirements for androgen receptor variant synthesis in advanced prostate cancer.","authors":"Laura Walker, Ruaridh Duncan, Beth Adamson, Hannah Kendall, Nicholas Brittain, Sara Luzzi, Dominic Jones, Lewis Chaytor, Samantha Peel, Claire Crafter, Daniel J O'Neill, Luke Gaughan","doi":"10.1158/1541-7786.MCR-23-0958","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-23-0958","url":null,"abstract":"<p><p>Resistance to androgen receptor (AR)-targeted therapies represent a major challenge in prostate cancer (PC). A key mechanism of treatment resistance in patients who progress to castrate-resistant PC (CRPC) is the generation of alternatively spliced androgen receptor variants (AR-Vs). Unlike full-length AR (FL-AR) isoforms, AR-Vs are constitutively active and refractory to current receptor-targeting agents hence drive tumour progression. Identifying regulators of AR-V synthesis may therefore provide new therapeutic opportunities in combination with conventional AR-targeting agents. Our understanding of AR transcript splicing, and the factors that control the synthesis of AR-Vs, remains limited. While candidate-based approaches have identified a small number of AR-V splicing regulators, an unbiased analysis of splicing factors important for AR-V generation is required to fill an important knowledge gap and furnish the field with novel and tractable targets for PC treatment. To that end, we conducted a bespoke CRISPR screen to profile splicing factor requirements for AR-V synthesis. MFAP1 and CWC22 were shown to be required for the generation of AR-V mRNA transcripts and their depletion resulted in reduced AR-V protein abundance and cell proliferation in several CRPC models. Global transcriptomic analysis of MFAP1-depleted cells revealed both AR-dependent and -independent transcriptional impact, including genes associated with DDR. As such, MFAP1 downregulation sensitised PC cells to ionising radiation suggesting therapeutically targeting AR-V splicing could provide novel cellular vulnerabilities which can be exploited in CRPC. Implications: We have utilised a CRISPR screening approach to identify key regulators of pathogenic AR splicing in prostate cancer.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
c-Myc, AKT, Hsc70, and the T-Box Transcription Factor TBX3 Form an Important Oncogenic Signaling Axis in Breast Cancer c-Myc、AKT、Hsc70 和 T-Box 转录因子 TBX3 在乳腺癌中形成了一个重要的致癌信号轴
IF 5.2 2区 医学
Molecular Cancer Research Pub Date : 2024-09-12 DOI: 10.1158/1541-7786.mcr-23-1031
Stephanie M. Ncube, ArulJothi Nagarajan, Dirk Lang, Musalula Sinkala, Carly A. Burmeister, Karabo Serala, Jonathan Blackburn, Sharon Prince
{"title":"c-Myc, AKT, Hsc70, and the T-Box Transcription Factor TBX3 Form an Important Oncogenic Signaling Axis in Breast Cancer","authors":"Stephanie M. Ncube, ArulJothi Nagarajan, Dirk Lang, Musalula Sinkala, Carly A. Burmeister, Karabo Serala, Jonathan Blackburn, Sharon Prince","doi":"10.1158/1541-7786.mcr-23-1031","DOIUrl":"https://doi.org/10.1158/1541-7786.mcr-23-1031","url":null,"abstract":"Breast cancer is the second leading cause of death in women globally, and it remains a health burden due to poor therapy response, cancer cell drug resistance, and the debilitating side effects associated with most therapies. One approach to addressing the need to improve breast cancer therapies has been to elucidate the mechanism(s) underpinning this disease to identify key drivers that can be targeted in molecular therapies. The T-box transcription factor, TBX3, is upregulated in breast cancer, in which it contributes to important oncogenic processes, and it has been validated as a potential therapeutic target. Here, we investigated the molecular mechanisms that upregulate TBX3 in breast cancer, and we show that it involves transcriptional activation by c-Myc, post-translational modification by AKT1 and AKT3, and interaction with the molecular chaperone Hsc70. Together, the results from this study provide evidence that c-Myc, AKT, Hsc70, and TBX3 form part of an important oncogenic pathway in breast cancer and thus reveal versatile ways of interfering with the oncogenic activity of TBX3 for the treatment of this neoplasm. Implications: Targeting the c-Myc/AKT/TBX3/Hsc70 signaling axis may be an effective treatment strategy for TBX3-driven breast cancer.","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsic Epigenetic State of Primary Osteosarcoma Drives Metastasis. 原发性骨肉瘤的内在表观遗传学状态推动了转移。
IF 4.1 2区 医学
Molecular Cancer Research Pub Date : 2024-09-04 DOI: 10.1158/1541-7786.MCR-23-0055
Irtisha Singh, Nino Rainusso, Lyazat Kurenbekova, Bikesh K Nirala, Juan Dou, Abhinaya Muruganandham, Jason T Yustein
{"title":"Intrinsic Epigenetic State of Primary Osteosarcoma Drives Metastasis.","authors":"Irtisha Singh, Nino Rainusso, Lyazat Kurenbekova, Bikesh K Nirala, Juan Dou, Abhinaya Muruganandham, Jason T Yustein","doi":"10.1158/1541-7786.MCR-23-0055","DOIUrl":"10.1158/1541-7786.MCR-23-0055","url":null,"abstract":"<p><p>Osteosarcoma is the most common primary malignant bone tumor affecting the pediatric population with a high potential to metastasize. However, insights into the molecular features enabling its metastatic potential are limited. We mapped the active chromatin landscapes of osteosarcoma tumors by integrating histone H3 lysine-acetylated chromatin state (n = 13), chromatin accessibility profiles (n = 11), and gene expression (n = 13) to understand the differences in their active chromatin profiles and their impact on molecular mechanisms driving the malignant phenotypes. Primary osteosarcoma tumors from patients with metastasis (primary met) have a distinct active chromatin landscape compared with those without metastasis (localized). This difference shapes the transcriptional profile of osteosarcoma. We identified novel candidate genes, including PPP1R1B, PREX1, and IGF2BP1, that exhibit increased chromatin activity in primary met. Loss of PREX1 in primary met osteosarcoma cells significantly diminishes osteosarcoma proliferation, invasion, migration, and colony formation capacity. Differential chromatin activity in primary met is associated with genes regulating cytoskeleton organization, cellular adhesion, and extracellular matrix, suggesting their role in facilitating osteosarcoma metastasis. Chromatin profiling of tumors from metastatic lung lesions shows increased chromatin activity in genes involved in cell migration and Wnt pathway. These data demonstrate that metastatic potential is intrinsically present in primary met tumors, with cellular chromatin profiles further adapting for successful dissemination, migration, and colonization at the distal site. Implications: Our study demonstrates that metastatic potential is intrinsic to primary metastatic osteosarcoma tumors, with chromatin profiles further adapting for successful dissemination, migration, and colonization at the distal metastatic site.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信