Raghav Joshi, Ming Zhou, Jeffrey H Lin, Fei Song, Daniel Fein, Colm Morrissey, Kun Hu, Alexander Poltorak, Paul Mathew
{"title":"A novel bispecific integrin α5β1/αv antibody reprograms the Myc-regulated basal phenotype of prostate cancer with natural killer cell-mediated tumor elimination.","authors":"Raghav Joshi, Ming Zhou, Jeffrey H Lin, Fei Song, Daniel Fein, Colm Morrissey, Kun Hu, Alexander Poltorak, Paul Mathew","doi":"10.1158/1541-7786.MCR-25-0104","DOIUrl":null,"url":null,"abstract":"<p><p>Integrin α5β1 and αv crosstalk in chemotaxis and clonogenic survival of prostate cancer cells is abrogated by a bispecific α5β1/αv antibody (BsAbα5β1/αv), which uniquely induces internalization and lysosomal degradation of target integrins. We hypothesized that the BsAbα5β1/αv inactivates pathological mechanosignaling pathways that correlate with integrin expression from patient samples. Mechanistic studies indicate that the BsAbα5β1/αv uniquely reverses YAP, beta-catenin and FAK nuclear localization compared to monospecific integrin α5β1 and αv antibody controls in basal-type androgen-receptor negative prostate cancer cells. Dual integrin αv and α5 knockdown alone phenocopied the BsAbα5β1/αv effect. Following BsAbα5β1/αv treatment, ATAC-seq studies indicated the chromatin accessibility to TEAD and AP-1 family members was markedly reduced. In vitro and in vivo RNA-seq indicated down-regulation of Myc/E2F, TGF-beta and epithelial mesenchymal transition (EMT) and upregulation of Type I and II interferon transcriptomic pathways. The BsAbα5β1/αv induced CXCL10 and CCL5 cytokine secretion, immune-infiltration of tumors, and natural-killer cell-mediated elimination of the basal-type prostate cancer xenografts in nude mice. αv integrin was highly expressed and principally correlated with the Myc signaling pathway in rapid autopsy tissue microarrays, consistent with correlative data from the SU2C metastatic castration-resistant prostate cancer and DKFZ early-onset prostate cancer cohorts. These studies connect integrin signaling with the central biology of basal-type and castration-resistant prostate cancer and define a novel therapeutic strategy that controls critical immunosuppressive pathways. Implications: Dual integrin α5β1/αv targeting with a bispecific antibody represents a novel therapeutic strategy that reprograms the epigenetic and transcriptomic signature of basal-type prostate cancer with induction of immunological tumor control.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-25-0104","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A novel bispecific integrin α5β1/αv antibody reprograms the Myc-regulated basal phenotype of prostate cancer with natural killer cell-mediated tumor elimination.
Integrin α5β1 and αv crosstalk in chemotaxis and clonogenic survival of prostate cancer cells is abrogated by a bispecific α5β1/αv antibody (BsAbα5β1/αv), which uniquely induces internalization and lysosomal degradation of target integrins. We hypothesized that the BsAbα5β1/αv inactivates pathological mechanosignaling pathways that correlate with integrin expression from patient samples. Mechanistic studies indicate that the BsAbα5β1/αv uniquely reverses YAP, beta-catenin and FAK nuclear localization compared to monospecific integrin α5β1 and αv antibody controls in basal-type androgen-receptor negative prostate cancer cells. Dual integrin αv and α5 knockdown alone phenocopied the BsAbα5β1/αv effect. Following BsAbα5β1/αv treatment, ATAC-seq studies indicated the chromatin accessibility to TEAD and AP-1 family members was markedly reduced. In vitro and in vivo RNA-seq indicated down-regulation of Myc/E2F, TGF-beta and epithelial mesenchymal transition (EMT) and upregulation of Type I and II interferon transcriptomic pathways. The BsAbα5β1/αv induced CXCL10 and CCL5 cytokine secretion, immune-infiltration of tumors, and natural-killer cell-mediated elimination of the basal-type prostate cancer xenografts in nude mice. αv integrin was highly expressed and principally correlated with the Myc signaling pathway in rapid autopsy tissue microarrays, consistent with correlative data from the SU2C metastatic castration-resistant prostate cancer and DKFZ early-onset prostate cancer cohorts. These studies connect integrin signaling with the central biology of basal-type and castration-resistant prostate cancer and define a novel therapeutic strategy that controls critical immunosuppressive pathways. Implications: Dual integrin α5β1/αv targeting with a bispecific antibody represents a novel therapeutic strategy that reprograms the epigenetic and transcriptomic signature of basal-type prostate cancer with induction of immunological tumor control.
期刊介绍:
Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.