Huiqin Yang, Jiahao Cai, Xiaolong Huang, Cheng Zhan, Chunlai Lu, Jie Gu, Teng Ma, Hongyu Zhang, Tao Cheng, Fengkai Xu, Di Ge
{"title":"革兰氏阴性微生物菌群失调通过激活食管鳞状细胞癌中的 CCL3/CCL5-CCR1-MAPK-PD-L1 通路促进肿瘤进展和免疫逃避","authors":"Huiqin Yang, Jiahao Cai, Xiaolong Huang, Cheng Zhan, Chunlai Lu, Jie Gu, Teng Ma, Hongyu Zhang, Tao Cheng, Fengkai Xu, Di Ge","doi":"10.1158/1541-7786.MCR-24-0451","DOIUrl":null,"url":null,"abstract":"<p><p>Gram-negative (G-) microflora dysbiosis occurs in multiple digestive tumors and is found to be the dominant microflora in the esophageal squamous cell carcinoma (ESCC) microenvironment. The continuous stimulation of G- bacterium metabolites may cause tumorigenesis and reshape the microimmune environment in ESCC. However, the mechanism of G- bacilli causing immune evasion in ESCC remains underexplored. We identified CC chemokine receptor 1 (CCR1) as a tumor-indicating gene in ESCC. Interestingly, expression levels of CCR1 and PD-L1 were mutually upregulated after G- bacilli metabolite lipopolysaccharide stimulation. First, we found that CCR1 high expression levels were associated with poor overall survival in ESCC. Importantly, we found that high levels of CCR1 expression upregulated PD-L1 expression by activating MAPK phosphorylation in ESCC and induced tumor malignant behavior. Finally, we found that T-cell exhaustion and cytotoxicity suppression were associated with CCR1 expression in ESCC, which were decreased after CCR1 inhibiting. Our work identifies CCR1 as a potential immune check point regulator of PD-L1 and may cause T-cell exhaustion and cytotoxicity suppression in ESCC microenvironment and highlights the potential value of CCR1 as a therapeutic target of immunotherapy. Implications: The esophageal microbial environment and its metabolites significantly affect the outcome of immunotherapy for ESCC.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"71-85"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694060/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gram-Negative Microflora Dysbiosis Facilitates Tumor Progression and Immune Evasion by Activating the CCL3/CCL5-CCR1-MAPK-PD-L1 Pathway in Esophageal Squamous Cell Carcinoma.\",\"authors\":\"Huiqin Yang, Jiahao Cai, Xiaolong Huang, Cheng Zhan, Chunlai Lu, Jie Gu, Teng Ma, Hongyu Zhang, Tao Cheng, Fengkai Xu, Di Ge\",\"doi\":\"10.1158/1541-7786.MCR-24-0451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gram-negative (G-) microflora dysbiosis occurs in multiple digestive tumors and is found to be the dominant microflora in the esophageal squamous cell carcinoma (ESCC) microenvironment. The continuous stimulation of G- bacterium metabolites may cause tumorigenesis and reshape the microimmune environment in ESCC. However, the mechanism of G- bacilli causing immune evasion in ESCC remains underexplored. We identified CC chemokine receptor 1 (CCR1) as a tumor-indicating gene in ESCC. Interestingly, expression levels of CCR1 and PD-L1 were mutually upregulated after G- bacilli metabolite lipopolysaccharide stimulation. First, we found that CCR1 high expression levels were associated with poor overall survival in ESCC. Importantly, we found that high levels of CCR1 expression upregulated PD-L1 expression by activating MAPK phosphorylation in ESCC and induced tumor malignant behavior. Finally, we found that T-cell exhaustion and cytotoxicity suppression were associated with CCR1 expression in ESCC, which were decreased after CCR1 inhibiting. Our work identifies CCR1 as a potential immune check point regulator of PD-L1 and may cause T-cell exhaustion and cytotoxicity suppression in ESCC microenvironment and highlights the potential value of CCR1 as a therapeutic target of immunotherapy. Implications: The esophageal microbial environment and its metabolites significantly affect the outcome of immunotherapy for ESCC.</p>\",\"PeriodicalId\":19095,\"journal\":{\"name\":\"Molecular Cancer Research\",\"volume\":\" \",\"pages\":\"71-85\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694060/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1541-7786.MCR-24-0451\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0451","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Gram-Negative Microflora Dysbiosis Facilitates Tumor Progression and Immune Evasion by Activating the CCL3/CCL5-CCR1-MAPK-PD-L1 Pathway in Esophageal Squamous Cell Carcinoma.
Gram-negative (G-) microflora dysbiosis occurs in multiple digestive tumors and is found to be the dominant microflora in the esophageal squamous cell carcinoma (ESCC) microenvironment. The continuous stimulation of G- bacterium metabolites may cause tumorigenesis and reshape the microimmune environment in ESCC. However, the mechanism of G- bacilli causing immune evasion in ESCC remains underexplored. We identified CC chemokine receptor 1 (CCR1) as a tumor-indicating gene in ESCC. Interestingly, expression levels of CCR1 and PD-L1 were mutually upregulated after G- bacilli metabolite lipopolysaccharide stimulation. First, we found that CCR1 high expression levels were associated with poor overall survival in ESCC. Importantly, we found that high levels of CCR1 expression upregulated PD-L1 expression by activating MAPK phosphorylation in ESCC and induced tumor malignant behavior. Finally, we found that T-cell exhaustion and cytotoxicity suppression were associated with CCR1 expression in ESCC, which were decreased after CCR1 inhibiting. Our work identifies CCR1 as a potential immune check point regulator of PD-L1 and may cause T-cell exhaustion and cytotoxicity suppression in ESCC microenvironment and highlights the potential value of CCR1 as a therapeutic target of immunotherapy. Implications: The esophageal microbial environment and its metabolites significantly affect the outcome of immunotherapy for ESCC.
期刊介绍:
Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.