Michael M Luzadder, Irina G Minko, Vladimir L Vartanian, Marten Davenport, Lev M Fedorov, Amanda K McCullough, R Stephen Lloyd
{"title":"NEIL1和XPA在限制黄曲霉毒素B₁诱发小鼠突变中的不同作用。","authors":"Michael M Luzadder, Irina G Minko, Vladimir L Vartanian, Marten Davenport, Lev M Fedorov, Amanda K McCullough, R Stephen Lloyd","doi":"10.1158/1541-7786.MCR-24-0577","DOIUrl":null,"url":null,"abstract":"<p><p>Dietary exposure to aflatoxin B₁ (AFB₁) is a risk factor for the development of hepatocellular carcinomas (HCCs). Following metabolic activation, AFB₁ reacts with guanines to form covalent DNA adducts, which induce high-frequency G > T transversions. The molecular signature associated with these mutational events aligns with the single base substitution signature 24 (SBS24) in the Catalog of Somatic Mutations in Cancer (COSMIC) database. Deficiencies in either base excision repair (BER) due to the absence of Nei-like DNA glycosylase 1 (NEIL1) or nucleotide excision repair (NER) due to the absence of xeroderma complementation group A protein (XPA) contribute to HCCs in murine models. In the current study, ultra-low error duplex sequencing was used to characterize mutational profiles in liver DNAs of NEIL1-deficient, XPA-deficient, and DNA repair-proficient mice following neonatal injection of 1 mg/kg AFB₁. Analyses of AFB₁-induced mutations showed high cosine similarity to SBS24, regardless of repair proficiency status. The absence of NEIL1 resulted in an approximately 30% increase in the frequency of mutations, with distribution suggesting preferential NEIL1-dependent repair of AFB₁ lesions in open chromatin regions. A trend of increased mutagenesis was also observed in the absence of XPA. Consistent with the role of XPA in transcription-coupled repair, mutational profiles in XPA-deficient mice showed disruption of the transcriptional bias in mutations associated with SBS24. Implications: Our findings define the roles of DNA repair pathways in AFB₁-induced mutagenesis and carcinogenesis in murine models, with these findings having implications in human health for those with BER and NER deficiencies.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The distinct roles of NEIL1 and XPA in limiting aflatoxin B₁-induced mutagenesis in mice.\",\"authors\":\"Michael M Luzadder, Irina G Minko, Vladimir L Vartanian, Marten Davenport, Lev M Fedorov, Amanda K McCullough, R Stephen Lloyd\",\"doi\":\"10.1158/1541-7786.MCR-24-0577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dietary exposure to aflatoxin B₁ (AFB₁) is a risk factor for the development of hepatocellular carcinomas (HCCs). Following metabolic activation, AFB₁ reacts with guanines to form covalent DNA adducts, which induce high-frequency G > T transversions. The molecular signature associated with these mutational events aligns with the single base substitution signature 24 (SBS24) in the Catalog of Somatic Mutations in Cancer (COSMIC) database. Deficiencies in either base excision repair (BER) due to the absence of Nei-like DNA glycosylase 1 (NEIL1) or nucleotide excision repair (NER) due to the absence of xeroderma complementation group A protein (XPA) contribute to HCCs in murine models. In the current study, ultra-low error duplex sequencing was used to characterize mutational profiles in liver DNAs of NEIL1-deficient, XPA-deficient, and DNA repair-proficient mice following neonatal injection of 1 mg/kg AFB₁. Analyses of AFB₁-induced mutations showed high cosine similarity to SBS24, regardless of repair proficiency status. The absence of NEIL1 resulted in an approximately 30% increase in the frequency of mutations, with distribution suggesting preferential NEIL1-dependent repair of AFB₁ lesions in open chromatin regions. A trend of increased mutagenesis was also observed in the absence of XPA. Consistent with the role of XPA in transcription-coupled repair, mutational profiles in XPA-deficient mice showed disruption of the transcriptional bias in mutations associated with SBS24. Implications: Our findings define the roles of DNA repair pathways in AFB₁-induced mutagenesis and carcinogenesis in murine models, with these findings having implications in human health for those with BER and NER deficiencies.</p>\",\"PeriodicalId\":19095,\"journal\":{\"name\":\"Molecular Cancer Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1541-7786.MCR-24-0577\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0577","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
从膳食中摄入黄曲霉毒素 B₁(AFB₁)是肝细胞癌(HCC)发病的一个风险因素。代谢活化后,AFB₁ 与鸟嘌呤发生反应,形成共价 DNA 加合物,从而诱发高频率的 G > T 转换。与这些突变事件相关的分子特征与癌症中的体细胞突变目录(COSMIC)数据库中的单碱基置换特征 24(SBS24)一致。在小鼠模型中,由于缺乏Nei-like DNA糖基化酶1(NEIL1)而导致的碱基切除修复(BER)缺陷或由于缺乏xeroderma补体A组蛋白(XPA)而导致的核苷酸切除修复(NER)缺陷都会导致HCC。在本研究中,我们使用超低误差双链测序来描述新生儿注射1毫克/千克AFB₁后NEIL1缺陷小鼠、XPA缺陷小鼠和DNA修复缺陷小鼠肝脏DNA的突变特征。对 AFB₁诱导突变的分析表明,无论修复能力如何,AFB₁诱导的突变都与 SBS24 具有高度的余弦相似性。缺少 NEIL1 会导致突变频率增加约 30%,其分布表明 NEIL1 会优先修复开放染色质区域的 AFB₁ 病变。在没有 XPA 的情况下,也观察到突变增加的趋势。与 XPA 在转录耦合修复中的作用一致,XPA 缺失小鼠的突变图谱显示,与 SBS24 相关的突变的转录偏倚被破坏。影响:我们的研究结果确定了 DNA 修复途径在小鼠模型中 AFB₁诱导的诱变和致癌过程中的作用,这些研究结果对有 BER 和 NER 缺乏症的人类健康有影响。
The distinct roles of NEIL1 and XPA in limiting aflatoxin B₁-induced mutagenesis in mice.
Dietary exposure to aflatoxin B₁ (AFB₁) is a risk factor for the development of hepatocellular carcinomas (HCCs). Following metabolic activation, AFB₁ reacts with guanines to form covalent DNA adducts, which induce high-frequency G > T transversions. The molecular signature associated with these mutational events aligns with the single base substitution signature 24 (SBS24) in the Catalog of Somatic Mutations in Cancer (COSMIC) database. Deficiencies in either base excision repair (BER) due to the absence of Nei-like DNA glycosylase 1 (NEIL1) or nucleotide excision repair (NER) due to the absence of xeroderma complementation group A protein (XPA) contribute to HCCs in murine models. In the current study, ultra-low error duplex sequencing was used to characterize mutational profiles in liver DNAs of NEIL1-deficient, XPA-deficient, and DNA repair-proficient mice following neonatal injection of 1 mg/kg AFB₁. Analyses of AFB₁-induced mutations showed high cosine similarity to SBS24, regardless of repair proficiency status. The absence of NEIL1 resulted in an approximately 30% increase in the frequency of mutations, with distribution suggesting preferential NEIL1-dependent repair of AFB₁ lesions in open chromatin regions. A trend of increased mutagenesis was also observed in the absence of XPA. Consistent with the role of XPA in transcription-coupled repair, mutational profiles in XPA-deficient mice showed disruption of the transcriptional bias in mutations associated with SBS24. Implications: Our findings define the roles of DNA repair pathways in AFB₁-induced mutagenesis and carcinogenesis in murine models, with these findings having implications in human health for those with BER and NER deficiencies.
期刊介绍:
Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.