Elias Oyesigye, Carla Cervini, Abimbola Oluwakayode, George Mahuku, Angel Medina
{"title":"First evidence on the occurrence of multi-mycotoxins and dietary risk exposure to AFB1 along the cassava value chain in Uganda","authors":"Elias Oyesigye, Carla Cervini, Abimbola Oluwakayode, George Mahuku, Angel Medina","doi":"10.1007/s12550-024-00556-z","DOIUrl":"https://doi.org/10.1007/s12550-024-00556-z","url":null,"abstract":"<p>This study investigated the occurrence and distribution of multiple mycotoxins (aflatoxin B<sub>1</sub>, B<sub>2</sub>, G<sub>1</sub>, G<sub>2</sub>, fumonisins B<sub>1</sub>, B<sub>2</sub>, ochratoxin A (OTA), deoxynivalenol (DON), zearalenone (ZEN), and citrinin (CIT)) in cassava products and as assessed the potential risk of aflatoxin B1 (AFB<sub>1</sub>) exposure among cassava consumers. A total of 192 samples of cassava products (96 flour and 96 chips, each with 48 samples from farmer and 48 from wholesaler) were analysed using LC/MS–MS. All positive samples irrespective of their origin (flour or chips) exhibited AFB<sub>1</sub> levels exceeding the EU regulatory threshold of 5 µg/kg. The sum of fumonisins (FB<sub>1</sub> + FB<sub>2</sub>), ZEN, and DON were significantly (<i>P</i> < 0.05) higher in cassava flour (14.3 µg/kg; 3.71 µg/kg; 25.1 µg/kg) compared to chips (6.54 µg/kg; 1.25 µg/kg; 0.25 µg/kg), respectively. Aflatoxins G<sub>2</sub> was not detected in any of 192 samples. Cassava flour samples from farmers exhibited significantly (<i>P</i> < 0.05) higher mean concentrations of AFB<sub>1</sub> (27.1 µg/kg), total aflatoxins (78.2 µg/kg), and ochratoxin A (79.6 µg/kg) in contrast to wholesalers, whose mean levels were notably lower at 8.91, 5.79 µg/kg, and 2.44 µg/kg, respectively, pointing the likely critical source of mycotoxin contamination. Cassava consumers in Northern Uganda are at a higher risk, with an estimated 2.06 cancer cases per 100,000 individuals per year compared to those in Eastern Uganda at 0.25. This study underscores the urgent need for interventions to manage aflatoxins in cassava flour, particularly at farm level in Northern Uganda. It accentuates a shift market to household-level sampling and the need for analytical methods targeting multiple mycotoxins.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"32 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anti-tumor activity of beauvericin: focus on intracellular signaling pathways","authors":"Ruoxuan Liu, Jie Ouyang, Liming Li","doi":"10.1007/s12550-024-00561-2","DOIUrl":"https://doi.org/10.1007/s12550-024-00561-2","url":null,"abstract":"<p>Beauvericin, a <i>Fusarium</i> mycotoxin commonly found in feeds, particularly cereals worldwide, exhibits a wide array of biofunction. It exhibits anticancer characteristics in addition to its antiviral, antifungal and antibacterial capabilities against gram-positive and gram-negative microorganisms. The mechanism underlying most of beauvericin’s properties lies in its ionophoric activity. By facilitating calcium (Ca<sup>2+</sup>) flow from the extracellular space as well as its release from intracellular reservoirs, beauvericin increases intracellular free Ca<sup>2+</sup>. This elevation in Ca<sup>2+</sup> levels leads to detrimental effects on mitochondria and oxidative stress, ultimately resulting in apoptosis and cell death. Studies on various cancer cell lines have shown that beauvericin induces apoptosis upon exposure. Moreover, besides its cytotoxic effects, beauvericin also inhibits cancer growth and progression by exerting anti-angiogenic and anti-migratory effects on cancer cells. Additionally, beauvericin possesses immunomodulatory properties, albeit less explored. Recent research indicates its potential to enhance the maturation and activation of dendritic cells (DCs) and T cells, both directly through its interaction with Toll-like receptor 4 (TLR4) and indirectly by increasing intracellular Ca<sup>2+</sup> levels. Hence, beauvericin could serve as an adjuvant in chemoimmunotherapy regimens to enhance treatment outcomes. Given these diverse properties, beauvericin emerges as an intriguing candidate for developing effective cancer treatments. This review explores the cellular signaling pathways involved in its anticancer effects.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"5 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epole Ngolle Ntungwe, Angéle N. Tchana, Wilfred Angie Abia
{"title":"Mycotoxin management: exploring natural solutions for mycotoxin prevention and detoxification in food and feed","authors":"Epole Ngolle Ntungwe, Angéle N. Tchana, Wilfred Angie Abia","doi":"10.1007/s12550-024-00562-1","DOIUrl":"https://doi.org/10.1007/s12550-024-00562-1","url":null,"abstract":"<p>Mycotoxins, secondary metabolites produced by various fungi, pose a significant threat to food and feed safety worldwide due to their toxic effects on human and animal health. Traditional methods of mycotoxin management often involve chemical treatments, which may raise concerns about residual toxicity and environmental impact. In recent years, there has been growing interest in exploring natural alternatives for preventing mycotoxin contamination and detoxification. This review provides an overview of the current research on the use of natural products for mitigating mycotoxin risks in food and feed. It encompasses a wide range of natural sources, including plant-derived compounds, microbial agents, and enzymatic control. The mechanisms underlying the efficacy of these natural products in inhibiting mycotoxin synthesis, adsorbing mycotoxins, or enhancing detoxification processes are discussed. Challenges and future directions in the development and application of natural products for mycotoxin management are also addressed. Overall, this review highlights the promising role of natural products as sustainable and eco-friendly alternatives for combating mycotoxin contamination in the food and feed supply chain.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"40 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Gachara, R. Suleiman, B. Kilima, M. Taoussi, S. El Kadili, M. L. Fauconnier, E. A. Barka, V. Vujanovic, R. Lahlali
{"title":"Pre- and post-harvest aflatoxin contamination and management strategies of Aspergillus spoilage in East African Community maize: review of etiology and climatic susceptibility","authors":"G. Gachara, R. Suleiman, B. Kilima, M. Taoussi, S. El Kadili, M. L. Fauconnier, E. A. Barka, V. Vujanovic, R. Lahlali","doi":"10.1007/s12550-024-00555-0","DOIUrl":"https://doi.org/10.1007/s12550-024-00555-0","url":null,"abstract":"<p>Globally, maize (<i>Zea mays</i> L<i>.</i>) is deemed an important cereal that serves as a staple food and feed for humans and animals, respectively. Across the East African Community, maize is the staple food responsible for providing over one-third of calories in diets. Ideally, stored maize functions as man-made grain ecosystems, with nutritive quality changes influenced predominantly by chemical, biological, and physical factors. Food spoilage and fungal contamination are convergent reasons that contribute to the exacerbation of mycotoxins prevalence, particularly when storage conditions have deteriorated. In Kenya, aflatoxins are known to be endemic with the 2004 acute aflatoxicosis outbreak being described as one of the most ravaging epidemics in the history of human mycotoxin poisoning. In Tanzania, the worst aflatoxin outbreak occurred in 2016 with case fatalities reaching 50%. Similar cases of aflatoxicoses have also been reported in Uganda, scenarios that depict the severity of mycotoxin contamination across this region. Rwanda, Burundi, and South Sudan seemingly have minimal occurrences and fatalities of aflatoxicoses and aflatoxin contamination. Low diet diversity tends to aggravate human exposure to aflatoxins since maize, as a dietetic staple, is highly aflatoxin-prone. In light of this, it becomes imperative to formulate and develop workable control frameworks that can be embraced in minimizing aflatoxin contamination throughout the food chain. This review evaluates the scope and magnitude of aflatoxin contamination in post-harvest maize and climate susceptibility within an East African Community context. The paper also treats the potential green control strategies against <i>Aspergillus</i> spoilage including biocontrol-prophylactic handling for better and durable maize production.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"100 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distribution of moniliformin in industrial maize milling and flaking process","authors":"Bertuzzi Terenzio, Abate Alessio, Giorni Paola","doi":"10.1007/s12550-024-00560-3","DOIUrl":"https://doi.org/10.1007/s12550-024-00560-3","url":null,"abstract":"<p>Moniliformin (MON) is a widespread emerging mycotoxin often occurring in maize at significant levels. Few published studies investigated MON redistribution in maize-derived products for human consumption; to better understand this issue, 5 maize lots with different levels of MON contamination were processed following an industrial milling process to evaluate the redistribution of the mycotoxin in final products (grits), by-products destined to feed (bran and flour) and cleaning waste. MON was quantified by LC–MS/MS after the purification step through the SPE column; moreover, a confirmatory method based on MON derivatization with 1,2-diamino-4,5-dichlorobenzene was developed. Relevant MON reduction was obtained after sieve cleaning, scourer process, and optical sorting, achieving a decrement of the concentration level close to 70%. The following other milling procedures showed a limited reduction from cleaned maize to small and large grits; considering the entire industrial process, the reduction percentage of MON contamination in the final products was 80.9 ± 9.3% and 81.0 ± 6.7% for small and large grits, respectively. The flaking process showed a very limited reduction of MON, close to 10%. Considering the widespread of MON occurrence in maize, the study highlights the importance of cleaning steps to achieve a low risk of exposure for the consumer.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"5 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kokeb Tesfamariam, Vera Plekhova, Seifu H. Gebreyesus, Carl Lachat, Eugenio Alladio, Alemayehu Argaw, Bilal Shikur Endris, Meselech Roro, Sarah De Saeger, Lynn Vanhaecke, Marthe De Boevre
{"title":"Rapid LA-REIMS-based metabolic fingerprinting of serum discriminates aflatoxin-exposed from non-exposed pregnant women: a prospective cohort from the Butajira Nutrition, Mental Health, and Pregnancy (BUNMAP) Study in rural Ethiopia","authors":"Kokeb Tesfamariam, Vera Plekhova, Seifu H. Gebreyesus, Carl Lachat, Eugenio Alladio, Alemayehu Argaw, Bilal Shikur Endris, Meselech Roro, Sarah De Saeger, Lynn Vanhaecke, Marthe De Boevre","doi":"10.1007/s12550-024-00558-x","DOIUrl":"https://doi.org/10.1007/s12550-024-00558-x","url":null,"abstract":"<p>To date, the changes in maternal metabolic response associated with prenatal aflatoxin exposure remain largely unknown. This study investigated the effects of prenatal aflatoxin exposure on the maternal serum metabolome in rural Ethiopia. A total of 309 pregnant women were enrolled prospectively, and their serum aflatoxin concentrations were measured using targeted liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). Serum metabolic fingerprints were obtained using laser-assisted rapid evaporative ionization mass spectrometry (LA-REIMS), followed by combination of univariate and multivariate statistical modelling to evaluate changes in circulating metabolic features between aflatoxin-exposed and unexposed mothers and to select discriminatory metabolic features. The analysis revealed that 81.8% of women were exposed to aflatoxins, with a median concentration of 12.9 pg/mg albumin. The orthogonal partial least square discriminant analysis (OPLS-DA) regression model demonstrated significant disparities in the serum metabolome when comparing Ethiopian pregnant women with low vs high aflatoxin exposure. Thirty-two differentially expressed metabolic features were identified, affecting aminoacyl-tRNA biosynthesis pathway. Several discriminatory metabolites have been identified, including glutamine, tryptophan, tyrosine, carnosine, and 1-methylnicotinamide. In conclusion, our findings indicate that aflatoxin exposure during pregnancy have shown disparities in the maternal serum metabolome, primarily affecting protein synthesis. Further research is needed to identify specific metabolite biomarkers and elucidate the underlying mechanisms.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"6 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junmin Ji, Yan Wang, Changjiang Li, Fengyao Xu, Miaomiao Jiang
{"title":"Safe detoxification on acid-washed activated carbon combined with chitosan for aflatoxins from contaminated peanut oil","authors":"Junmin Ji, Yan Wang, Changjiang Li, Fengyao Xu, Miaomiao Jiang","doi":"10.1007/s12550-024-00559-w","DOIUrl":"https://doi.org/10.1007/s12550-024-00559-w","url":null,"abstract":"<p>Aflatoxins are one of the most toxic mycotoxins and can cause serious harm to humans and animals. Adsorption is a practical decontamination technique favored by the industry because of its advantages of low cost, speed and simplicity, and environmental friendliness. In this work, the adsorption features of activated carbon and chitosan were fabricated in a composite through chemical co-precipitation to improve its properties for adsorption. Furthermore, the capacity of the synthesized chitosan and acid-washed activated carbon composite (CS-AAC) to attenuate the aflatoxins in contaminated peanut oil and the adsorption capacity at different initial aflatoxins content, contact duration, and temperature were evaluated. The results showed a higher adsorption capacity (removal efficiency to 93.45% of AFB<sub>1</sub>, 94.05% of AFB<sub>2</sub>, 89.16% of AFG<sub>1</sub>, 83.26% of AFG<sub>2</sub>). The Freundlich isothermal and D–R model and the pseudo-second-order rate expression both implied a good correlation with the test data and explained the adsorption mechanism well. The adsorption mechanism was found to be accomplished primarily via ion exchange and chelation. According to thermodynamic results (△<i>G</i> < 0, △<i>H</i> > 0, △<i>S</i> > 0), the adsorption process was endothermic and spontaneous. Compared to acid-washed activated carbon, CS-AAC enhanced the retention of V<sub>E</sub> and sterols (especially V<sub>E</sub> by 23%), and the safety of CS-AAC adsorbent was explored by cellular experiments. In conclusion, CS-AAC is a promising adsorbent material for the removal of aflatoxins from edible oils.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"45 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luisina D. Demonte, Eugenia Cendoya, María J. Nichea, Cindy J. Romero Donato, María L. Ramirez, María R. Repetti
{"title":"Occurrence of modified mycotoxins in Latin America: an up-to-date review","authors":"Luisina D. Demonte, Eugenia Cendoya, María J. Nichea, Cindy J. Romero Donato, María L. Ramirez, María R. Repetti","doi":"10.1007/s12550-024-00548-z","DOIUrl":"https://doi.org/10.1007/s12550-024-00548-z","url":null,"abstract":"<p>The Latin America region has a considerable extent of varied climate conditions: from tropical, subtropical, and warm temperate to temperate. Among the surface territory, different agricultural products are produced, making them an important food source for human consumption. Fungal species commonly colonize those important agricultural products and often contaminate them with mycotoxins that have a major impact on health, welfare, and productivity. Nowadays, special attention is paid to modified mycotoxins, which are those that cannot be detected by conventional analytical methods. However, little data about their natural occurrence in food and feed is available, especially in Latin American countries, where, among all the countries in this region, only a few of them are working on this subject. Thus, the present review summarizes the published information available in order to determine the possible human exposure risk to these toxins.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"12 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fungal metabolite altersolanol a exhibits potent cytotoxicity against human placental trophoblasts in vitro via mitochondria-mediated apoptosis.","authors":"Ting Gu, Yuting Wen, Qian Zhou, Wei Yuan, Haichun Guo, Wen-Lin Chang, Qing Yang","doi":"10.1007/s12550-024-00539-0","DOIUrl":"10.1007/s12550-024-00539-0","url":null,"abstract":"<p><p>Altersolanol A, a fungus-derived tetrahydroanthraquinone, has shown cytotoxic effects on multiple cancer cells. However, its reproductive toxicity in humans has not been well-addressed. The present study was aimed at investigating the cytotoxicity of altersolanol A on human placental trophoblasts including choriocarcinoma cell line JEG-3 and normal trophoblast cell line HTR-8/SVneo in vitro. The results showed that altersolanol A inhibited proliferation and colony formation of human trophoblasts, and the choriocarcinoma cells were more sensitive to the compound than the normal trophoblasts. Altersolanol A induced cell cycle arrest at G2/M phase in JEG-3 cells and S phase in HTR-8/SVneo cells, downregulated the expression of cell cycle-related checkpoint proteins, and upregulated the p21 level. Altersolanol A also promoted apoptosis in human trophoblasts via elevating the Bax/Bcl-2 ratio and decreasing both caspase-3 and caspase-9 levels. Meanwhile, altersolanol A suppressed the mitochondrial membrane potential and induced ROS production and cytochrome c release, which activated the mitochondria-mediated intrinsic apoptosis. Moreover, migration and invasion were inhibited upon altersolanol A exposure with downregulation of matrix metalloproteinase (MMP)-2 in JEG-3 cells and MMP-9 in HTR-8/SVneo cells. Mechanically, altersolanol A supplement decreased the phosphorylation of JNK, ERK, and p38, manifesting the inactivation of MAPK signaling pathway in the human trophoblasts. In conclusion, altersolanol A exhibited potential reproductive cytotoxicity against human trophoblasts via promoting mitochondrial-mediated apoptosis and inhibiting the MAPK signaling pathway.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"419-432"},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mycotoxin ResearchPub Date : 2024-08-01Epub Date: 2024-05-14DOI: 10.1007/s12550-024-00538-1
Michael Kuhn, Reham Hassan, Daniela González, Maiju Myllys, Zaynab Hobloss, Gisela H Degen, Hans-Ulrich Humpf, Jan G Hengstler, Benedikt Cramer, Ahmed Ghallab
{"title":"Role of albumin in the metabolism and excretion of ochratoxin A.","authors":"Michael Kuhn, Reham Hassan, Daniela González, Maiju Myllys, Zaynab Hobloss, Gisela H Degen, Hans-Ulrich Humpf, Jan G Hengstler, Benedikt Cramer, Ahmed Ghallab","doi":"10.1007/s12550-024-00538-1","DOIUrl":"10.1007/s12550-024-00538-1","url":null,"abstract":"<p><p>Ochratoxin A (OTA) is known to be strongly bound to serum albumin, but it remains unknown how albumin affects its metabolism and kinetics. To close this gap, we used a mouse model, where heterozygous albumin deletion reduces serum albumin to concentrations similar to hypoalbuminemic patients and completely eliminates albumin by a homozygous knockout. OTA and its potential metabolites (OTα, 4-OH-OTA, 7'-OH-OTA, OTHQ, OP-OTA, OTB-GSH, OTB-NAC, OTB) were time-dependently analyzed in plasma, bile, and urine by LC-MS/MS and were compared to previously published hepatotoxicity and nephrotoxicity data. Homozygous albumin deletion strongly accelerated plasma clearance as well as biliary and urinary excretion of the parent compound and its hydroxylation products. Decreasing albumin in mice by the heterozygous and even more by the homozygous knockout leads to an increase in the parent compound in urine which corresponded to increased nephrotoxicity. The role of albumin in OTA-induced hepatotoxicity is more complex, since heterozygous but not homozygous nor wild-type mice showed a strong biliary increase in the toxic open lactone OP-OTA. Correspondingly, OTA-induced hepatotoxicity was higher in heterozygous than in wild-type and homozygous animals. We present evidence that albumin-mediated retention of OTA in hepatocytes is required for formation of the toxic OP-OTA, while complete albumin elimination leads to rapid biliary clearance of OTA from hepatocytes with less formation of OP-OTA. In conclusion, albumin has a strong influence on metabolism and toxicity of OTA. In hypoalbuminemia, the parent OTA is associated with increased nephrotoxicity and the open lactone with increased hepatotoxicity.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"433-445"},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}