{"title":"HIF-1α是BV2细胞中T-2毒素诱导的JNK介导的淀粉样蛋白前体激活和tau过度磷酸化的 \"制动器\"。","authors":"Yingying Zhao, Martin Valis, Xu Wang, Eugenie Nepovimova, Qinghua Wu, Kamil Kuca","doi":"10.1007/s12550-024-00525-6","DOIUrl":null,"url":null,"abstract":"<p><p>Mycotoxins have been shown to activate multiple mechanisms that may potentially lead to the progression of Alzheimer's disease (AD). Overexpression/aberrant cleavage of amyloid precursor protein (APP) and hyperphosphorylation of tau (P-tau) is hallmark pathologies of AD. Recent advances suggest that the neurotoxic effects of mycotoxins involve c-Jun N-terminal kinase (JNK) and hypoxia-inducible factor-1α (HIF-1α) signaling, which are closely linked to the pathogenesis of AD. Due to the high toxicity and broad contamination of T-2 toxin, we assessed how T-2 toxin exposure alters APP and P-tau formation in BV2 cells and determined the underlying roles of HIF-1α and JNK signaling. The findings revealed that T-2 toxin stimulated the expression of HIF-1α and hypoxic stress factors in addition to increasing the expression of APP and P-tau. Additionally, HIF-1α acted as a \"brake\" on the induction of APP and P-tau expression by negatively regulating these proteins. Notably, T-2 toxin activated JNK signaling, which broke this \"brake\" to promote the formation of APP and P-tau. Furthermore, the cytoskeleton was an essential target for T-2 toxin to exert cytotoxicity, and JNK/HIF-1α participated in this damage. Collectively, when the T-2 toxin induces the production of APP and P-tau, JNK might interfere with HIF-1α's protective function. This study will provide clues for further research on the neurotoxicity of mycotoxins.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"223-234"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HIF-1α is a \\\"brake\\\" in JNK-mediated activation of amyloid protein precursor and hyperphosphorylation of tau induced by T-2 toxin in BV2 cells.\",\"authors\":\"Yingying Zhao, Martin Valis, Xu Wang, Eugenie Nepovimova, Qinghua Wu, Kamil Kuca\",\"doi\":\"10.1007/s12550-024-00525-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mycotoxins have been shown to activate multiple mechanisms that may potentially lead to the progression of Alzheimer's disease (AD). Overexpression/aberrant cleavage of amyloid precursor protein (APP) and hyperphosphorylation of tau (P-tau) is hallmark pathologies of AD. Recent advances suggest that the neurotoxic effects of mycotoxins involve c-Jun N-terminal kinase (JNK) and hypoxia-inducible factor-1α (HIF-1α) signaling, which are closely linked to the pathogenesis of AD. Due to the high toxicity and broad contamination of T-2 toxin, we assessed how T-2 toxin exposure alters APP and P-tau formation in BV2 cells and determined the underlying roles of HIF-1α and JNK signaling. The findings revealed that T-2 toxin stimulated the expression of HIF-1α and hypoxic stress factors in addition to increasing the expression of APP and P-tau. Additionally, HIF-1α acted as a \\\"brake\\\" on the induction of APP and P-tau expression by negatively regulating these proteins. Notably, T-2 toxin activated JNK signaling, which broke this \\\"brake\\\" to promote the formation of APP and P-tau. Furthermore, the cytoskeleton was an essential target for T-2 toxin to exert cytotoxicity, and JNK/HIF-1α participated in this damage. Collectively, when the T-2 toxin induces the production of APP and P-tau, JNK might interfere with HIF-1α's protective function. This study will provide clues for further research on the neurotoxicity of mycotoxins.</p>\",\"PeriodicalId\":19060,\"journal\":{\"name\":\"Mycotoxin Research\",\"volume\":\" \",\"pages\":\"223-234\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycotoxin Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12550-024-00525-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycotoxin Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12550-024-00525-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
HIF-1α is a "brake" in JNK-mediated activation of amyloid protein precursor and hyperphosphorylation of tau induced by T-2 toxin in BV2 cells.
Mycotoxins have been shown to activate multiple mechanisms that may potentially lead to the progression of Alzheimer's disease (AD). Overexpression/aberrant cleavage of amyloid precursor protein (APP) and hyperphosphorylation of tau (P-tau) is hallmark pathologies of AD. Recent advances suggest that the neurotoxic effects of mycotoxins involve c-Jun N-terminal kinase (JNK) and hypoxia-inducible factor-1α (HIF-1α) signaling, which are closely linked to the pathogenesis of AD. Due to the high toxicity and broad contamination of T-2 toxin, we assessed how T-2 toxin exposure alters APP and P-tau formation in BV2 cells and determined the underlying roles of HIF-1α and JNK signaling. The findings revealed that T-2 toxin stimulated the expression of HIF-1α and hypoxic stress factors in addition to increasing the expression of APP and P-tau. Additionally, HIF-1α acted as a "brake" on the induction of APP and P-tau expression by negatively regulating these proteins. Notably, T-2 toxin activated JNK signaling, which broke this "brake" to promote the formation of APP and P-tau. Furthermore, the cytoskeleton was an essential target for T-2 toxin to exert cytotoxicity, and JNK/HIF-1α participated in this damage. Collectively, when the T-2 toxin induces the production of APP and P-tau, JNK might interfere with HIF-1α's protective function. This study will provide clues for further research on the neurotoxicity of mycotoxins.
期刊介绍:
Mycotoxin Research, the official publication of the Society for Mycotoxin Research, is a peer-reviewed, scientific journal dealing with all aspects related to toxic fungal metabolites. The journal publishes original research articles and reviews in all areas dealing with mycotoxins. As an interdisciplinary platform, Mycotoxin Research welcomes submission of scientific contributions in the following research fields:
- Ecology and genetics of mycotoxin formation
- Mode of action of mycotoxins, metabolism and toxicology
- Agricultural production and mycotoxins
- Human and animal health aspects, including exposure studies and risk assessment
- Food and feed safety, including occurrence, prevention, regulatory aspects, and control of mycotoxins
- Environmental safety and technology-related aspects of mycotoxins
- Chemistry, synthesis and analysis.