Nature Reviews Molecular Cell Biology最新文献

筛选
英文 中文
Structural biology and molecular pharmacology of voltage-gated ion channels 电压门控离子通道的结构生物学和分子药理学。
IF 81.3 1区 生物学
Nature Reviews Molecular Cell Biology Pub Date : 2024-08-05 DOI: 10.1038/s41580-024-00763-7
Jian Huang, Xiaojing Pan, Nieng Yan
{"title":"Structural biology and molecular pharmacology of voltage-gated ion channels","authors":"Jian Huang, Xiaojing Pan, Nieng Yan","doi":"10.1038/s41580-024-00763-7","DOIUrl":"10.1038/s41580-024-00763-7","url":null,"abstract":"Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure–function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery. Voltage-gated ion channels (VGICs) regulate ion permeability in multiple physiological processes, thereby representing important disease targets. This Review discusses how advances in cryo-electron microscopy have contributed to our understanding of VGIC structures and mechanisms and their interactions with drugs.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 11","pages":"904-925"},"PeriodicalIF":81.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MYB-related proteins make chloroplasts 与 MYB 相关的蛋白质使叶绿体
IF 81.3 1区 生物学
Nature Reviews Molecular Cell Biology Pub Date : 2024-08-02 DOI: 10.1038/s41580-024-00771-7
Kim Baumann
{"title":"MYB-related proteins make chloroplasts","authors":"Kim Baumann","doi":"10.1038/s41580-024-00771-7","DOIUrl":"10.1038/s41580-024-00771-7","url":null,"abstract":"MYB-related transcription factors are found to function in chloroplast biogenesis alongside GLK in the distantly related species Marchantia polymorpha and Arabidopsis thaliana.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 9","pages":"674-674"},"PeriodicalIF":81.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What does it take to build a nucleus? 构建原子核需要什么?
IF 81.3 1区 生物学
Nature Reviews Molecular Cell Biology Pub Date : 2024-07-24 DOI: 10.1038/s41580-024-00766-4
Abigail Buchwalter
{"title":"What does it take to build a nucleus?","authors":"Abigail Buchwalter","doi":"10.1038/s41580-024-00766-4","DOIUrl":"10.1038/s41580-024-00766-4","url":null,"abstract":"Abigail Buchwalter recounts what happened to the nuclei of cells lacking all lamin genes.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 10","pages":"764-764"},"PeriodicalIF":81.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of and challenges in targeting NAD+ metabolism 针对 NAD+ 代谢的调节和挑战。
IF 81.3 1区 生物学
Nature Reviews Molecular Cell Biology Pub Date : 2024-07-18 DOI: 10.1038/s41580-024-00752-w
Marie E. Migaud, Mathias Ziegler, Joseph A. Baur
{"title":"Regulation of and challenges in targeting NAD+ metabolism","authors":"Marie E. Migaud, Mathias Ziegler, Joseph A. Baur","doi":"10.1038/s41580-024-00752-w","DOIUrl":"10.1038/s41580-024-00752-w","url":null,"abstract":"Nicotinamide adenine dinucleotide, in its oxidized (NAD+) and reduced (NADH) forms, is a reduction–oxidation (redox) co-factor and substrate for signalling enzymes that have essential roles in metabolism. The recognition that NAD+ levels fall in response to stress and can be readily replenished through supplementation has fostered great interest in the potential benefits of increasing or restoring NAD+ levels in humans to prevent or delay diseases and degenerative processes. However, much about the biology of NAD+ and related molecules remains poorly understood. In this Review, we discuss the current knowledge of NAD+ metabolism, including limitations of, assumptions about and unappreciated factors that might influence the success or contribute to risks of NAD+ supplementation. We highlight several ongoing controversies in the field, and discuss the role of the microbiome in modulating the availability of NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), the presence of multiple cellular compartments that have distinct pools of NAD+ and NADH, and non-canonical NAD+ and NADH degradation pathways. We conclude that a substantial investment in understanding the fundamental biology of NAD+, its detection and its metabolites in specific cells and cellular compartments is needed to support current translational efforts to safely boost NAD+ levels in humans. Nicotinamide adenine dinucleotide (NAD+) has essential roles in metabolism and can be readily supplemented, potentially to benefit human health. This Review discusses recent insights into the roles of the microbiome and cellular compartments in regulating NAD+ metabolism, and the promise and pitfalls of NAD+ supplementation.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 10","pages":"822-840"},"PeriodicalIF":81.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular and pathological functions of tau tau 的细胞和病理功能
IF 81.3 1区 生物学
Nature Reviews Molecular Cell Biology Pub Date : 2024-07-16 DOI: 10.1038/s41580-024-00753-9
Celeste Parra Bravo, Sarah A. Naguib, Li Gan
{"title":"Cellular and pathological functions of tau","authors":"Celeste Parra Bravo, Sarah A. Naguib, Li Gan","doi":"10.1038/s41580-024-00753-9","DOIUrl":"10.1038/s41580-024-00753-9","url":null,"abstract":"Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions. Tau is a microtubule-binding protein that is expressed primarily in neurons. The abnormal accumulation of tau aggregates in neurons is associated with neurodegenerative diseases, known as tauopathies, such as Alzheimer disease and frontotemporal dementia. This Review discusses recent insights into the diverse cellular functions of tau, the pathology of tau aggregates and the potential for therapeutic interventions.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 11","pages":"845-864"},"PeriodicalIF":81.3,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The discovery of cyclin-dependent kinases 依赖细胞周期蛋白的激酶的发现
IF 81.3 1区 生物学
Nature Reviews Molecular Cell Biology Pub Date : 2024-07-15 DOI: 10.1038/s41580-024-00765-5
Paul Nurse
{"title":"The discovery of cyclin-dependent kinases","authors":"Paul Nurse","doi":"10.1038/s41580-024-00765-5","DOIUrl":"10.1038/s41580-024-00765-5","url":null,"abstract":"Paul Nurse discusses how a 1971 paper by Culotti and Hartwell inspired him to investigate the cell cycle in fission yeast, and how these genetics studies led to the discovery of cyclin-dependent kinases.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 10","pages":"763-763"},"PeriodicalIF":81.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virus–host warfare by PROTACs PROTAC 的病毒-宿主战争
IF 81.3 1区 生物学
Nature Reviews Molecular Cell Biology Pub Date : 2024-07-09 DOI: 10.1038/s41580-024-00761-9
Kylie J. Walters
{"title":"Virus–host warfare by PROTACs","authors":"Kylie J. Walters","doi":"10.1038/s41580-024-00761-9","DOIUrl":"10.1038/s41580-024-00761-9","url":null,"abstract":"The studies that paved the way for the development of PROTACs (proteolysis-targeting chimeras) as therapeutic strategies, and the HPV vaccine.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 9","pages":"675-675"},"PeriodicalIF":81.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-lived proteomes in healthy ovaries 健康卵巢中的长寿命蛋白质组
IF 81.3 1区 生物学
Nature Reviews Molecular Cell Biology Pub Date : 2024-07-05 DOI: 10.1038/s41580-024-00764-6
Eytan Zlotorynski
{"title":"Long-lived proteomes in healthy ovaries","authors":"Eytan Zlotorynski","doi":"10.1038/s41580-024-00764-6","DOIUrl":"10.1038/s41580-024-00764-6","url":null,"abstract":"Many proteins in the mouse ovary are extremely stable; they enhance proteostasis and limit protein aggregation, thereby supporting the maintenance of the long-lived oocytes.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 8","pages":"596-596"},"PeriodicalIF":81.3,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterochromatin as a balancing act between transcription and gene silencing 异染色质是转录和基因沉默之间的平衡。
IF 81.3 1区 生物学
Nature Reviews Molecular Cell Biology Pub Date : 2024-07-03 DOI: 10.1038/s41580-024-00762-8
Sigurd Braun
{"title":"Heterochromatin as a balancing act between transcription and gene silencing","authors":"Sigurd Braun","doi":"10.1038/s41580-024-00762-8","DOIUrl":"10.1038/s41580-024-00762-8","url":null,"abstract":"An elegant study revealed the distinct roles of different H3K9 methylation states in heterochromatin formation and function.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 9","pages":"676-676"},"PeriodicalIF":81.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resolution in super-resolution microscopy — definition, trade-offs and perspectives 超分辨率显微镜的分辨率--定义、权衡与展望。
IF 81.3 1区 生物学
Nature Reviews Molecular Cell Biology Pub Date : 2024-07-01 DOI: 10.1038/s41580-024-00755-7
Kirti Prakash, David Baddeley, Christian Eggeling, Reto Fiolka, Rainer Heintzmann, Suliana Manley, Aleksandra Radenovic, Carlas Smith, Hari Shroff, Lothar Schermelleh
{"title":"Resolution in super-resolution microscopy — definition, trade-offs and perspectives","authors":"Kirti Prakash, David Baddeley, Christian Eggeling, Reto Fiolka, Rainer Heintzmann, Suliana Manley, Aleksandra Radenovic, Carlas Smith, Hari Shroff, Lothar Schermelleh","doi":"10.1038/s41580-024-00755-7","DOIUrl":"10.1038/s41580-024-00755-7","url":null,"abstract":"Super-resolution microscopy (SRM) is gaining popularity in biosciences; however, claims about optical resolution are contested and often misleading. In this Viewpoint, experts share their views on resolution and common trade-offs, such as labelling and post-processing, aiming to clarify them for biologists and facilitate deeper understanding and best use of SRM. In this Viewpoint, experts discuss resolution and common trade-offs in super-resolution microscopy, aiming to improve how biologists use the technology.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 9","pages":"677-682"},"PeriodicalIF":81.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141477009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信