MRS Communications最新文献

筛选
英文 中文
Surface modification of tin oxide nanowires through hydroxyl group anchoring 通过羟基锚定对氧化锡纳米线进行表面改性
IF 1.9 4区 材料科学
MRS Communications Pub Date : 2024-09-13 DOI: 10.1557/s43579-024-00642-4
Cleber A. Amorim, Estácio P. de Araújo, Ariano De Giovanni Rodrigues, Adenilson J. Chiquito
{"title":"Surface modification of tin oxide nanowires through hydroxyl group anchoring","authors":"Cleber A. Amorim, Estácio P. de Araújo, Ariano De Giovanni Rodrigues, Adenilson J. Chiquito","doi":"10.1557/s43579-024-00642-4","DOIUrl":"https://doi.org/10.1557/s43579-024-00642-4","url":null,"abstract":"<p>In this work, the functionalization of SnO<sub>2</sub> nanowires with grafted hydroxyl (OH) groups was introduced by changing the post-synthetic treatment and by growth in a vapor phase. Besides, the present paper describes two types of growth methods: (i) the vapor–solid one with post-synthesis treatment under NaOH solutions with different pH, and (ii) the direct growth using the vapor–liquid–solid one under water vapor. Structural characterizations demonstrated that OH groups were successfully anchored. Notably, band gap changes in the presence of OH groups are revealed. This kind of surface state engineering precisely opens new avenues of SnO<sub>2</sub> nanowire applications in sensors and semiconductor uses.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"47 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct ink writing of silicone elastomers to fabricate microfluidic devices and soft robots 利用硅弹性体的直接墨水书写技术制造微流控设备和软机器人
IF 1.9 4区 材料科学
MRS Communications Pub Date : 2024-09-12 DOI: 10.1557/s43579-024-00631-7
Kento Yamagishi, Rahul Karyappa, Terry Ching, Michinao Hashimoto
{"title":"Direct ink writing of silicone elastomers to fabricate microfluidic devices and soft robots","authors":"Kento Yamagishi, Rahul Karyappa, Terry Ching, Michinao Hashimoto","doi":"10.1557/s43579-024-00631-7","DOIUrl":"https://doi.org/10.1557/s43579-024-00631-7","url":null,"abstract":"<p>This article reviews the recent progress in fabricating microfluidic devices and soft robots using direct ink writing (DIW) three-dimensional (3D) printing with silicone elastomers. Additive manufacturing, especially 3D printing, has become an alternative method to traditional soft lithography for producing microchannels, establishing a new standard in the field of microfluidics. This approach offers unprecedented opportunities for digital control, automation, and the elimination of manual assembly. Among different 3D printing technologies, DIW 3D printing facilitates the accurate deposition of liquid silicone precursors on various substrates in the air or liquid media, enabling the fabrication of microfluidic structures using a one-part room-temperature-vulcanizing (RTV) silicone sealant and two-part addition-curing silicone elastomers. The effectiveness of DIW 3D printing is demonstrated through (1) creating microchannels on various substrates, (2) printing interconnected, multilayer microchannels without the need for sacrificial support materials or extensive post-processing steps, and (3) integrating electronic components into microchannels during the printing process. In this article, overviews of the fabrication of microfluidic devices using 3D printing are provided first, followed by a discussion of different criteria and approaches for DIW 3D printing of silicone-based elastomeric structures in open-air and embedded media. Next, the structure–property relations of silicone-based microfluidic devices are discussed. Then, examples of DIW-fabricated silicone microfluidic devices and soft robotics are showcased, highlighting the unique benefits and opportunities of the methods. Finally, current challenges and future directions in DIW 3D printing of microfluidic systems are discussed.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"7 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermal synthesis and photoluminescence of single-crystalline LaVO4:Eu3+ nanorods/nanosheaves 单晶 LaVO4:Eu3+ 纳米棒/纳米波的水热合成与光致发光
IF 1.9 4区 材料科学
MRS Communications Pub Date : 2024-09-12 DOI: 10.1557/s43579-024-00636-2
Jun Wang, Xuexue Pan, Zhirui Li, Runkai Xu, Peifeng Zhang, Zhirui Lin, Yuliang Fan, Jinjie Xie, Jingping Ke, Zhazira Supiyeva
{"title":"Hydrothermal synthesis and photoluminescence of single-crystalline LaVO4:Eu3+ nanorods/nanosheaves","authors":"Jun Wang, Xuexue Pan, Zhirui Li, Runkai Xu, Peifeng Zhang, Zhirui Lin, Yuliang Fan, Jinjie Xie, Jingping Ke, Zhazira Supiyeva","doi":"10.1557/s43579-024-00636-2","DOIUrl":"https://doi.org/10.1557/s43579-024-00636-2","url":null,"abstract":"<p>In the presence of ethylenediaminetetraacetic acid (EDTA), a straightforward hydrothermal method was conceptualized for the purpose of controlling the size and form of the zircon-type tetragonal phase of LaVO<sub>4</sub>:Eu nanostructures. Nanorods and nanosheaves have been selectively obtained by tuning the pH value. In particular, LaVO<sub>4</sub>:Eu nanorods covered by EDTA molecules are soluble in water. In addition, research on photoluminescence has demonstrated that Eu<sup>3+</sup>-doped LaVO<sub>4</sub> nanorods exhibit significant red emission when exposed to ultraviolet light. This phenomenon has the potential to be utilized in a variety of disciplines, including visual display, catalysis, and biological imaging.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"47 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating adaptive learning with post hoc model explanation and symbolic regression to build interpretable surrogate models 将自适应学习与事后模型解释和符号回归相结合,建立可解释的代用模型
IF 1.9 4区 材料科学
MRS Communications Pub Date : 2024-09-09 DOI: 10.1557/s43579-024-00633-5
Ankita Biswas, Shunshun Liu, Sunidhi Garg, Md Golam Morshed, Hamed Vakili, Avik W. Ghosh, Prasanna V. Balachandran
{"title":"Integrating adaptive learning with post hoc model explanation and symbolic regression to build interpretable surrogate models","authors":"Ankita Biswas, Shunshun Liu, Sunidhi Garg, Md Golam Morshed, Hamed Vakili, Avik W. Ghosh, Prasanna V. Balachandran","doi":"10.1557/s43579-024-00633-5","DOIUrl":"https://doi.org/10.1557/s43579-024-00633-5","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We develop a materials informatics workflow to build an interpretable surrogate model for micromagnetic simulations. Our goal is to predict the energy barrier of a moving isolated skyrmion in rare-earth-free <span>(hbox {Mn}_4)</span>N. Our approach integrates adaptive learning with post hoc model explanation and symbolic regression methods. We discuss an unexplored acquisition function (information condensing active learning) within the adaptive learning loop and compare it with the known standard deviation function for efficient navigation of the search space. Model-agnostic post hoc explanation techniques then uncover trends learned by the trained model, which we then leverage to constrain the expressions used for symbolic regression.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"12 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The magnetic states in cobalt-promoted MoS2 microspheres 钴促进的 MoS2 微球中的磁态
IF 1.9 4区 材料科学
MRS Communications Pub Date : 2024-09-06 DOI: 10.1557/s43579-024-00632-6
Oscar A. López-Galán, Brenda Torres, Lizeth Vazquez-Zubiate, José T. Elizalde-Galindo, Félix Galindo-Hernández, Manuel Ramos
{"title":"The magnetic states in cobalt-promoted MoS2 microspheres","authors":"Oscar A. López-Galán, Brenda Torres, Lizeth Vazquez-Zubiate, José T. Elizalde-Galindo, Félix Galindo-Hernández, Manuel Ramos","doi":"10.1557/s43579-024-00632-6","DOIUrl":"https://doi.org/10.1557/s43579-024-00632-6","url":null,"abstract":"<p>The cobalt-promoted MoS<sub>2</sub> microspheres have been synthesized by hydrothermal methods using sodium molybdate precursors. Scanning electron microscopy indicates that spherical shape morphology and cobalt atoms are detected at MoS<sub>2</sub> edges corresponding to (101)-plane as revealed by Cs-corrected transmission electron microscopy. The magnetic states were measured by magnetization curves obtaining a 0.044 emu/g due to paramagnetic contribution. Furthermore, the electronic structure from the density of states for 2H-MoS<sub>2</sub> with and without cobalt at the (101) edge plane possesses a magnetic property with a value of 0.16 μ<sub>B</sub> attributed to broken symmetry.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"58 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The creation of defects in Cu-doped TiO2 memristive devices 掺铜二氧化钛记忆器件中缺陷的产生
IF 1.9 4区 材料科学
MRS Communications Pub Date : 2024-09-06 DOI: 10.1557/s43579-024-00634-4
Bin Gu, Bo Zhang, Tomas Wagner
{"title":"The creation of defects in Cu-doped TiO2 memristive devices","authors":"Bin Gu, Bo Zhang, Tomas Wagner","doi":"10.1557/s43579-024-00634-4","DOIUrl":"https://doi.org/10.1557/s43579-024-00634-4","url":null,"abstract":"<p>Memristors are utilized in nonvolatile memory and artificial synaptic devices. However, the industrial application of memristors has been restricted by the occurrence of fatigue, the mechanism of which is still under debate. In this paper, we systematically investigated the mechanism of defect generation created by Joule heating in Cu-doped TiO<sub>2</sub> memristive device. The results also demonstrated that the Joule heat for artificial synaptic emulation was less severe than that for digital data storage.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"29 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beneath the disorder: Unraveling the impacts of doping on organic electronics and thermoelectrics 无序之下揭示掺杂对有机电子和热电的影响
IF 1.9 4区 材料科学
MRS Communications Pub Date : 2024-08-28 DOI: 10.1557/s43579-024-00628-2
Andrew Tolton, Zlatan Akšamija
{"title":"Beneath the disorder: Unraveling the impacts of doping on organic electronics and thermoelectrics","authors":"Andrew Tolton, Zlatan Akšamija","doi":"10.1557/s43579-024-00628-2","DOIUrl":"https://doi.org/10.1557/s43579-024-00628-2","url":null,"abstract":"<p>Organic materials have found widespread applications but require doping to overcome their intrinsically low carrier concentration. Doping injects free carriers into the polymer, moving the position of the Fermi level, and creates coulombic traps, changing the shape of the electronic density of states (DOS). We develop equations to explicitly map the DOS parameters to the Seebeck vs conductivity relationship. At low carrier concentrations, this relationship is a universal slope <span>(-{k}_{B}/q)</span>, while at higher carrier concentrations, the slope becomes dependent on the shape of the DOS. We conclude that, at high doping, a heavy-tailed DOS leads to higher thermoelectric power factors.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"4 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun LaAlO3 nanofibers from different solvent systems 不同溶剂体系电纺 LaAlO3 纳米纤维
IF 1.9 4区 材料科学
MRS Communications Pub Date : 2024-08-28 DOI: 10.1557/s43579-024-00627-3
Refka Andoulsi-Fezei, Soumaya Sayeb, Mounir Ferhi, Karima Horchani-Naifer
{"title":"Electrospun LaAlO3 nanofibers from different solvent systems","authors":"Refka Andoulsi-Fezei, Soumaya Sayeb, Mounir Ferhi, Karima Horchani-Naifer","doi":"10.1557/s43579-024-00627-3","DOIUrl":"https://doi.org/10.1557/s43579-024-00627-3","url":null,"abstract":"<p>LaAlO<sub>3</sub> nanofibers are prepared using reproducible and green electrospinning technique. Particularly, <i>N</i>,<i>N</i>-dimethylformamide (DMF) and acetic acid/water (A-A/W) were used as solvents. The structural and textural properties were compared. Results indicate that the diameter of as-spun nanofibers with (A-A/W) ranged from 50 to 400 nm. While it is between 100 and 600 nm for (DMF). After calcination, it decreased to an average of 80 nm for (A-A/W) and 200 nm for (DMF). Higher pore volume (0.69 cc g<sup>−1</sup>) and surface area (176.3 m<sup>2</sup> g<sup>−1</sup>) were achieved for (A-A/W) solvent. The textural properties confirm that LaAlO<sub>3</sub> exhibit high performances for advanced technologies mainly sensors.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"15 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectroscopic-ellipsometry study of the optical properties of ZnO nanoparticle thin films 氧化锌纳米粒子薄膜光学特性的光谱-椭偏研究
IF 1.9 4区 材料科学
MRS Communications Pub Date : 2024-08-22 DOI: 10.1557/s43579-024-00626-4
Khagendra P. Bhandari, Dhurba R. Sapkota, Balaji Ramanujam
{"title":"Spectroscopic-ellipsometry study of the optical properties of ZnO nanoparticle thin films","authors":"Khagendra P. Bhandari, Dhurba R. Sapkota, Balaji Ramanujam","doi":"10.1557/s43579-024-00626-4","DOIUrl":"https://doi.org/10.1557/s43579-024-00626-4","url":null,"abstract":"<p>We described optical properties of zinc oxide (ZnO) nanoparticles determined by spectroscopic ellipsometry analysis from <i>ex situ</i> spectroscopic ellipsometry (<i>ex situ</i> SE) measurements made on nanocrystalline thin films over a spectral range of 0.734 to 4.00 eV. We determined the complex refractive index function, <span>(widetilde{n}(omega )=n(omega )+ikappa (omega ))</span>, by fitting a layered parametric model to the ellipsometric measurements. We collected SE measurements at an incidence angle of 70°. We also determined absorption coefficient spectra using extinction coefficient, κ and wavelength, <i>λ</i>. The direct optical bandgap of the films was obtained as 3.2 eV using the ellipsometric method.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"58 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Traces of physics in computing 计算机中的物理学痕迹
IF 1.9 4区 材料科学
MRS Communications Pub Date : 2024-08-16 DOI: 10.1557/s43579-024-00614-8
Julian Rrushi
{"title":"Traces of physics in computing","authors":"Julian Rrushi","doi":"10.1557/s43579-024-00614-8","DOIUrl":"https://doi.org/10.1557/s43579-024-00614-8","url":null,"abstract":"<p>This paper introduces and explains cyber physics, which we define as mathematical equations, i.e., physics-like laws, that control, regulate, or otherwise govern the inner workings of the hardware architecture, operating system, application code, algorithms, and networks on a classical computing machine. Cyber physics integrates computer science with conventional physics, in particular with quantum physics, thermodynamics, and statistical mechanics. Naturally, the technical description of cyber physics in the paper draws on both of these fields of science.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"167 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信