Nature Microbiology最新文献

筛选
英文 中文
Metabolites from intact phage-infected Synechococcus chemotactically attract heterotrophic marine bacteria 来自完整噬菌体感染的 Synechococcus 的代谢物具有吸引海洋异养菌的化学作用
IF 28.3 1区 生物学
Nature Microbiology Pub Date : 2024-11-15 DOI: 10.1038/s41564-024-01843-2
Richard J. Henshaw, Jonathan Moon, Michael R. Stehnach, Benjamin P. Bowen, Suzanne M. Kosina, Trent R. Northen, Jeffrey S. Guasto, Sheri A. Floge
{"title":"Metabolites from intact phage-infected Synechococcus chemotactically attract heterotrophic marine bacteria","authors":"Richard J. Henshaw, Jonathan Moon, Michael R. Stehnach, Benjamin P. Bowen, Suzanne M. Kosina, Trent R. Northen, Jeffrey S. Guasto, Sheri A. Floge","doi":"10.1038/s41564-024-01843-2","DOIUrl":"https://doi.org/10.1038/s41564-024-01843-2","url":null,"abstract":"<p>Chemical cues mediate interactions between marine phytoplankton and bacteria, underpinning ecosystem-scale processes including nutrient cycling and carbon fixation. Phage infection alters host metabolism, stimulating the release of chemical cues from intact plankton, but how these dynamics impact ecology and biogeochemistry is poorly understood. Here we determine the impact of phage infection on dissolved metabolite pools from marine cyanobacteria and the subsequent chemotactic response of heterotrophic bacteria using time-resolved metabolomics and microfluidics. Metabolites released from intact, phage-infected <i>Synechococcus</i> elicited strong chemoattraction from <i>Vibrio alginolyticus</i> and <i>Pseudoalteromonas haloplanktis</i>, especially during early infection stages. Sustained bacterial chemotaxis occurred towards live-infected <i>Synechococcus</i>, contrasted by no discernible chemotaxis towards uninfected cyanobacteria. High-throughput microfluidics identified 5′-deoxyadenosine and 5′-methylthioadenosine as key attractants. Our findings establish that, before lysis, phage-infected picophytoplankton release compounds that attract motile heterotrophic bacteria, suggesting a mechanism for resource transfer that might impact carbon and nutrient fluxes across trophic levels.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"11 1","pages":""},"PeriodicalIF":28.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell imaging of the Mycobacterium tuberculosis cell cycle reveals linear and heterogenous growth 结核分枝杆菌细胞周期的单细胞成像揭示了线性和异质生长过程
IF 28.3 1区 生物学
Nature Microbiology Pub Date : 2024-11-15 DOI: 10.1038/s41564-024-01846-z
Eun Seon Chung, Prathitha Kar, Maliwan Kamkaew, Ariel Amir, Bree B. Aldridge
{"title":"Single-cell imaging of the Mycobacterium tuberculosis cell cycle reveals linear and heterogenous growth","authors":"Eun Seon Chung, Prathitha Kar, Maliwan Kamkaew, Ariel Amir, Bree B. Aldridge","doi":"10.1038/s41564-024-01846-z","DOIUrl":"https://doi.org/10.1038/s41564-024-01846-z","url":null,"abstract":"<p>Difficulties in antibiotic treatment of <i>Mycobacterium tuberculosis</i> (Mtb) are partly thought to be due to heterogeneity in growth. Although the ability of bacterial pathogens to regulate growth is crucial to control homeostasis, virulence and drug responses, single-cell growth and cell cycle behaviours of Mtb are poorly characterized. Here we use time-lapse, single-cell imaging of Mtb coupled with mathematical modelling to observe asymmetric growth and heterogeneity in cell size, interdivision time and elongation speed. We find that, contrary to <i>Mycobacterium smegmatis</i>, Mtb initiates cell growth not only from the old pole but also from new poles or both poles. Whereas most organisms grow exponentially at the single-cell level, Mtb has a linear growth mode. Our data show that the growth behaviour of Mtb diverges from that of model bacteria, provide details into how Mtb grows and creates heterogeneity and suggest that growth regulation may also diverge from that in other bacteria.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"2018 1","pages":""},"PeriodicalIF":28.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimates of microbiome heritability across hosts 不同宿主微生物组遗传率的估计值
IF 28.3 1区 生物学
Nature Microbiology Pub Date : 2024-11-15 DOI: 10.1038/s41564-024-01865-w
Andrew H. Morris, Brendan J. M. Bohannan
{"title":"Estimates of microbiome heritability across hosts","authors":"Andrew H. Morris, Brendan J. M. Bohannan","doi":"10.1038/s41564-024-01865-w","DOIUrl":"https://doi.org/10.1038/s41564-024-01865-w","url":null,"abstract":"<p>Microbiomes contribute to variation in many plant and animal traits, suggesting that microbiome-mediated traits could evolve through selection on the host. However, for such evolution to occur, microbiomes must exhibit sufficient heritability to contribute to host adaptation. Previous work has attempted to estimate the heritability of a variety of microbiome attributes. Here we show that most published estimates are limited to vertebrate and plant hosts, but significant heritability of microbiome attributes has been frequently reported. This indicates that microbiomes could evolve in response to host-level selection, but studies across a wider range of hosts are necessary before general conclusions can be made. We suggest future studies focus on standardizing heritability measurements for the purpose of meta-analyses and investigate the role of the environment in contributing to heritable microbiome variation. This could have important implications for the use of microbiomes in conservation, agriculture and medicine.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"245 1","pages":""},"PeriodicalIF":28.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A method to detect origin of transfer sequences for plasmid conjugation 一种检测质粒共轭转移序列起源的方法
IF 28.3 1区 生物学
Nature Microbiology Pub Date : 2024-11-13 DOI: 10.1038/s41564-024-01845-0
{"title":"A method to detect origin of transfer sequences for plasmid conjugation","authors":"","doi":"10.1038/s41564-024-01845-0","DOIUrl":"https://doi.org/10.1038/s41564-024-01845-0","url":null,"abstract":"Plasmid conjugation has been extensively studied over the past decades. Yet, in most plasmids, the minimal region required for conjugation (the origin of transfer (oriT) sequence) is unknown. The characterization of known oriTs enabled the development of a validated method to identify genomic regions with novel families of oriTs across bacterial plasmids.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"19 1","pages":""},"PeriodicalIF":28.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial solutions must be deployed against climate catastrophe 必须采用微生物解决方案应对气候灾难
IF 28.3 1区 生物学
Nature Microbiology Pub Date : 2024-11-11 DOI: 10.1038/s41564-024-01861-0
Raquel Peixoto, Christian R. Voolstra, Lisa Y. Stein, Philip Hugenholtz, Joana Falcao Salles, Shady A. Amin, Max Häggblom, Ann Gregory, Thulani P. Makhalanyane, Fengping Wang, Nadège Adoukè Agbodjato, Yinzhao Wang, Nianzhi Jiao, Jay T. Lennon, Antonio Ventosa, Patrik M. Bavoil, Virginia Miller, Jack A. Gilbert
{"title":"Microbial solutions must be deployed against climate catastrophe","authors":"Raquel Peixoto, Christian R. Voolstra, Lisa Y. Stein, Philip Hugenholtz, Joana Falcao Salles, Shady A. Amin, Max Häggblom, Ann Gregory, Thulani P. Makhalanyane, Fengping Wang, Nadège Adoukè Agbodjato, Yinzhao Wang, Nianzhi Jiao, Jay T. Lennon, Antonio Ventosa, Patrik M. Bavoil, Virginia Miller, Jack A. Gilbert","doi":"10.1038/s41564-024-01861-0","DOIUrl":"https://doi.org/10.1038/s41564-024-01861-0","url":null,"abstract":"This paper is a call to action. By publishing concurrently across journals like an emergency bulletin, we are not merely making a plea for awareness about climate change. Instead, we are demanding immediate, tangible steps that harness the power of microbiology and the expertise of researchers and policymakers to safeguard the planet for future generations.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"23 1","pages":""},"PeriodicalIF":28.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the diversity of origin of transfer-containing sequences in mobilizable plasmids 扩大可移动质粒中含转移序列起源的多样性
IF 28.3 1区 生物学
Nature Microbiology Pub Date : 2024-11-08 DOI: 10.1038/s41564-024-01844-1
Manuel Ares-Arroyo, Amandine Nucci, Eduardo P. C. Rocha
{"title":"Expanding the diversity of origin of transfer-containing sequences in mobilizable plasmids","authors":"Manuel Ares-Arroyo, Amandine Nucci, Eduardo P. C. Rocha","doi":"10.1038/s41564-024-01844-1","DOIUrl":"https://doi.org/10.1038/s41564-024-01844-1","url":null,"abstract":"<p>Conjugative plasmids are important drivers of bacterial evolution. Most plasmids lack genes for conjugation and characterized origins of transfer (<i>oriT</i>), which has hampered our understanding of plasmid mobility. Here we used bioinformatic analyses to characterize occurrences of known <i>oriT</i> families across 38,057 plasmids, confirming that most conjugative and mobilizable plasmids lack identifiable <i>oriTs</i>. Recognizable <i>oriT</i> sequences tend to be intergenic, upstream of relaxase genes and specifically associated with relaxase types. We used these criteria to develop a computational method to search for and identify 21 additional families of <i>oriT</i>-containing sequences in plasmids from the pathogens <i>Escherichia coli</i>, <i>Klebsiella pneumoniae</i> and <i>Acinetobacter baumannii</i>. Sequence analyses found 3,072 occurrences of these <i>oriT</i>-containing sequences across 2,976 plasmids, many of which encoded antimicrobial resistance genes. Six candidate <i>oriT</i>-containing sequences were validated experimentally and were shown to facilitate conjugation in <i>E. coli</i>. These findings expand our understanding of plasmid mobility.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"36 1","pages":""},"PeriodicalIF":28.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A widespread phage-encoded kinase enables evasion of multiple host antiphage defence systems 一种广泛存在的噬菌体编码激酶能够躲避多种宿主抗噬菌体防御系统的攻击
IF 28.3 1区 生物学
Nature Microbiology Pub Date : 2024-11-06 DOI: 10.1038/s41564-024-01851-2
Susu Jiang, Chao Chen, Wanqiu Huang, Yue He, Xuan Du, Yi Wang, Hongda Ou, Zixin Deng, Congrui Xu, Lixu Jiang, Lianrong Wang, Shi Chen
{"title":"A widespread phage-encoded kinase enables evasion of multiple host antiphage defence systems","authors":"Susu Jiang, Chao Chen, Wanqiu Huang, Yue He, Xuan Du, Yi Wang, Hongda Ou, Zixin Deng, Congrui Xu, Lixu Jiang, Lianrong Wang, Shi Chen","doi":"10.1038/s41564-024-01851-2","DOIUrl":"https://doi.org/10.1038/s41564-024-01851-2","url":null,"abstract":"<p>DNA degradation (Dnd) is a widespread bacterial antiphage defence system that relies on DNA phosphorothioate (PT) modification for self/non-self discrimination and subsequent degradation of unmodified DNA. Phages employ counterstrategies to evade host immunity, but anti-Dnd immunity has not been characterized. Here we report an immune evasion protein encoded by the <i>Salmonella</i> phage JSS1 that contributes to subverting Dnd and other defence systems. Using quantitative proteomic and phosphoproteomic analyses, we show that the protein JSS1_004 employs N-terminal Ser/Thr/Tyr protein kinase activity to catalyse the multisite phosphorylation of host DndFGH. Notably, JSS1_004 also phosphorylates other bacterial immune systems to varying degrees, including CRISPR‒Cas, QatABCD, SIR2+HerA and DUF4297+HerA. Given that JSS1_004 and its homologues are widespread in phylogenetically diverse phages, we suggest that this strategy constitutes a family of immune evasion proteins that increases the chances of phage proliferation even when a host deploys multiple defence systems.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"13 1","pages":""},"PeriodicalIF":28.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Submicrometre spatiotemporal characterization of the Toxoplasma adhesion strategy for gliding motility 弓形虫滑行运动粘附策略的亚微米级时空特性分析
IF 28.3 1区 生物学
Nature Microbiology Pub Date : 2024-11-04 DOI: 10.1038/s41564-024-01818-3
Luis Vigetti, Bastien Touquet, Delphine Debarre, Thierry Rose, Lionel Bureau, Dima Abdallah, Galina V. Dubacheva, Isabelle Tardieux
{"title":"Submicrometre spatiotemporal characterization of the Toxoplasma adhesion strategy for gliding motility","authors":"Luis Vigetti, Bastien Touquet, Delphine Debarre, Thierry Rose, Lionel Bureau, Dima Abdallah, Galina V. Dubacheva, Isabelle Tardieux","doi":"10.1038/s41564-024-01818-3","DOIUrl":"https://doi.org/10.1038/s41564-024-01818-3","url":null,"abstract":"<p><i>Toxoplasma gondii</i> is a protozoan apicomplexan parasite that uses an adhesion-dependent mode of motility termed gliding to access host cells and disseminate into tissues. Previous studies on Apicomplexa motile morphotypes, including the <i>T. gondii</i> tachyzoite, have identified a cortical actin–myosin motor system that drives the rearward translocation of transmembrane adhesins, thus powering forward movement. However, this model is currently questioned. Here, combining micropatterning and tunable surface chemistry (to edit parasite surface ligands) with flow force and live or super-resolution imaging, we show that tachyzoites build only one apical anchoring contact with the substrate, over which it slides. Furthermore, we show that glycosaminoglycan–parasite interactions are sufficient to promote such force-productive contact and find that the apicobasal flow is set up independent of adhesin release and surface interactions. These findings should enable further characterization of the molecular functions at the <i>T. gondii</i>–substrate mechanosensitive interface and their comparison across apicomplexans.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"27 1","pages":""},"PeriodicalIF":28.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of strain level phage–host interactions across the Escherichia genus using only genomic information 仅利用基因组信息预测整个埃希氏菌属的菌株级噬菌体-宿主相互作用
IF 20.5 1区 生物学
Nature Microbiology Pub Date : 2024-10-31 DOI: 10.1038/s41564-024-01832-5
Baptiste Gaborieau, Hugo Vaysset, Florian Tesson, Inès Charachon, Nicolas Dib, Juliette Bernier, Tanguy Dequidt, Héloïse Georjon, Olivier Clermont, Pascal Hersen, Laurent Debarbieux, Jean-Damien Ricard, Erick Denamur, Aude Bernheim
{"title":"Prediction of strain level phage–host interactions across the Escherichia genus using only genomic information","authors":"Baptiste Gaborieau,&nbsp;Hugo Vaysset,&nbsp;Florian Tesson,&nbsp;Inès Charachon,&nbsp;Nicolas Dib,&nbsp;Juliette Bernier,&nbsp;Tanguy Dequidt,&nbsp;Héloïse Georjon,&nbsp;Olivier Clermont,&nbsp;Pascal Hersen,&nbsp;Laurent Debarbieux,&nbsp;Jean-Damien Ricard,&nbsp;Erick Denamur,&nbsp;Aude Bernheim","doi":"10.1038/s41564-024-01832-5","DOIUrl":"10.1038/s41564-024-01832-5","url":null,"abstract":"Predicting bacteriophage infection of specific bacterial strains promises advancements in phage therapy and microbial ecology. Whether the dynamics of well-established phage–host model systems generalize to the wide diversity of microbes is currently unknown. Here we show that we could accurately predict the outcomes of phage–bacteria interactions at the strain level in natural isolates from the genus Escherichia using only genomic data (area under the receiver operating characteristic curve (AUROC) of 86%). We experimentally established a dataset of interactions between 403 diverse Escherichia strains and 96 phages. Most interactions are explained by adsorption factors as opposed to antiphage systems which play a marginal role. We trained predictive algorithms and pinpoint poorly predicted interactions to direct future research efforts. Finally, we established a pipeline to recommend tailored phage cocktails, demonstrating efficiency on 100 pathogenic E. coli isolates. This work provides quantitative insights into phage–host specificity and supports the use of predictive algorithms in phage therapy. Phage–host interactions are computationally predicted using only genomic information, highlighting future research directions and enabling generation of custom phage cocktails.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 11","pages":"2847-2861"},"PeriodicalIF":20.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A path to better practices in microbiology 改进微生物学实践的途径
IF 20.5 1区 生物学
Nature Microbiology Pub Date : 2024-10-30 DOI: 10.1038/s41564-024-01864-x
{"title":"A path to better practices in microbiology","authors":"","doi":"10.1038/s41564-024-01864-x","DOIUrl":"10.1038/s41564-024-01864-x","url":null,"abstract":"In this month’s issue, we launch a new Series on best practices: an evolving collection of articles that will expand over time to highlight tools, frameworks and resources that push us towards better microbiology research.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 11","pages":"2763-2764"},"PeriodicalIF":20.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41564-024-01864-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信