Nick Quinn-Bohmann, Alex V. Carr, Christian Diener, Sean M. Gibbons
{"title":"从基因组尺度到群落尺度的人类肠道微生物群代谢模型","authors":"Nick Quinn-Bohmann, Alex V. Carr, Christian Diener, Sean M. Gibbons","doi":"10.1038/s41564-025-01972-2","DOIUrl":null,"url":null,"abstract":"<p>Metabolic models of individual microorganisms or small microbial consortia have become standard research tools in the bioengineering and systems biology fields. However, extending metabolic modelling to diverse microbial communities, such as those in the human gut, remains a practical challenge from both modelling and experimental validation perspectives. In complex communities, metabolic models accounting for community dynamics, or those that consider multiple objectives, may provide optimal predictions over simpler steady-state models, but require a much higher computational cost. Here we describe some of the strengths and limitations of microbial community-scale metabolic models and argue for a robust validation framework for developing personalized, mechanistic and accurate predictions of microbial community metabolic behaviours across environmental contexts. Ultimately, quantitatively accurate microbial community-scale metabolic models could aid in the design and testing of personalized prebiotic, probiotic and dietary interventions that optimize for translationally relevant outcomes.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"74 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moving from genome-scale to community-scale metabolic models for the human gut microbiome\",\"authors\":\"Nick Quinn-Bohmann, Alex V. Carr, Christian Diener, Sean M. Gibbons\",\"doi\":\"10.1038/s41564-025-01972-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metabolic models of individual microorganisms or small microbial consortia have become standard research tools in the bioengineering and systems biology fields. However, extending metabolic modelling to diverse microbial communities, such as those in the human gut, remains a practical challenge from both modelling and experimental validation perspectives. In complex communities, metabolic models accounting for community dynamics, or those that consider multiple objectives, may provide optimal predictions over simpler steady-state models, but require a much higher computational cost. Here we describe some of the strengths and limitations of microbial community-scale metabolic models and argue for a robust validation framework for developing personalized, mechanistic and accurate predictions of microbial community metabolic behaviours across environmental contexts. Ultimately, quantitatively accurate microbial community-scale metabolic models could aid in the design and testing of personalized prebiotic, probiotic and dietary interventions that optimize for translationally relevant outcomes.</p>\",\"PeriodicalId\":18992,\"journal\":{\"name\":\"Nature Microbiology\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":20.5000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41564-025-01972-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-025-01972-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Moving from genome-scale to community-scale metabolic models for the human gut microbiome
Metabolic models of individual microorganisms or small microbial consortia have become standard research tools in the bioengineering and systems biology fields. However, extending metabolic modelling to diverse microbial communities, such as those in the human gut, remains a practical challenge from both modelling and experimental validation perspectives. In complex communities, metabolic models accounting for community dynamics, or those that consider multiple objectives, may provide optimal predictions over simpler steady-state models, but require a much higher computational cost. Here we describe some of the strengths and limitations of microbial community-scale metabolic models and argue for a robust validation framework for developing personalized, mechanistic and accurate predictions of microbial community metabolic behaviours across environmental contexts. Ultimately, quantitatively accurate microbial community-scale metabolic models could aid in the design and testing of personalized prebiotic, probiotic and dietary interventions that optimize for translationally relevant outcomes.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.