Molecular Cell最新文献

筛选
英文 中文
The mitochondrial DNAJC co-chaperone TCAIM reduces α-ketoglutarate dehydrogenase protein levels to regulate metabolism
IF 16 1区 生物学
Molecular Cell Pub Date : 2025-01-30 DOI: 10.1016/j.molcel.2025.01.006
Wang Jiahui, Yu Xiang, Zhong Youhuan, Ma Xiaomin, Gao Yuanzhu, Zhou Dejian, Wang Jie, Fu Yinkun, Fan Shi, Su Juncheng, Huang Masha, Haigis Marcia, Wang Peiyi, Xu Yingjie, Yang Wen
{"title":"The mitochondrial DNAJC co-chaperone TCAIM reduces α-ketoglutarate dehydrogenase protein levels to regulate metabolism","authors":"Wang Jiahui, Yu Xiang, Zhong Youhuan, Ma Xiaomin, Gao Yuanzhu, Zhou Dejian, Wang Jie, Fu Yinkun, Fan Shi, Su Juncheng, Huang Masha, Haigis Marcia, Wang Peiyi, Xu Yingjie, Yang Wen","doi":"10.1016/j.molcel.2025.01.006","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.01.006","url":null,"abstract":"Mitochondrial heat shock proteins and co-chaperones play crucial roles in maintaining proteostasis by regulating unfolded proteins, usually without specific target preferences. In this study, we identify a DNAJC-type co-chaperone: T cell activation inhibitor, mitochondria (TCAIM), and demonstrate its specific binding to α-ketoglutarate dehydrogenase (OGDH), a key rate-limiting enzyme in mitochondrial metabolism. This interaction suppresses OGDH function and subsequently reduces carbohydrate catabolism in both cultured cells and murine models. Using cryoelectron microscopy (cryo-EM), we resolve the human OGDH-TCAIM complex and reveal that TCAIM binds to OGDH without altering its apo structure. Most importantly, we discover that TCAIM facilitates the reduction of functional OGDH through its interaction, which depends on HSPA9 and LONP1. Our findings unveil a role of the mitochondrial proteostasis system in regulating a critical metabolic enzyme and introduce a previously unrecognized post-translational regulatory mechanism.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"29 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence of orphan quality control pathways at a ubiquitin chain-elongating ligase
IF 16 1区 生物学
Molecular Cell Pub Date : 2025-01-28 DOI: 10.1016/j.molcel.2025.01.002
Sara Carrillo Roas, Yuichi Yagita, Paul Murphy, Robert Kurzbauer, Tim Clausen, Eszter Zavodszky, Ramanujan S. Hegde
{"title":"Convergence of orphan quality control pathways at a ubiquitin chain-elongating ligase","authors":"Sara Carrillo Roas, Yuichi Yagita, Paul Murphy, Robert Kurzbauer, Tim Clausen, Eszter Zavodszky, Ramanujan S. Hegde","doi":"10.1016/j.molcel.2025.01.002","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.01.002","url":null,"abstract":"Unassembled and partially assembled subunits of multi-protein complexes have emerged as major quality control clients, particularly under conditions of imbalanced gene expression such as stress, aging, and aneuploidy. The factors and mechanisms that eliminate such orphan subunits to maintain protein homeostasis are incompletely defined. Here, we show that the UBR4-KCMF1 ubiquitin ligase complex is required for the efficient degradation of multiple unrelated orphan subunits from the chaperonin, proteasome cap, proteasome core, and a protein targeting complex. Epistasis analysis in cells and reconstitution studies <em>in vitro</em> show that the UBR4-KCMF1 complex acts downstream of a priming ubiquitin ligase that first mono-ubiquitinates orphans. UBR4 recognizes both the orphan and its mono-ubiquitin and builds a K48-linked poly-ubiquitin degradation signal. The discovery of a convergence point for multiple quality control pathways may explain why aneuploid cells are especially sensitive to loss of UBR4 or KCMF1 and identifies a potential vulnerability across many cancers.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"7 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OXCT1 succinylation and activation by SUCLA2 promotes ketolysis and liver tumor growth
IF 16 1区 生物学
Molecular Cell Pub Date : 2025-01-24 DOI: 10.1016/j.molcel.2024.12.025
Dong Guo, Qiujing Yu, Yingying Tong, Xu Qian, Ying Meng, Fei Ye, Xiaoming Jiang, Lihui Wu, Qingqing Yang, Suyao Li, Min Li, Qingang Wu, Liwei Xiao, Xuxiao He, Rongxuan Zhu, Guijun Liu, Dou Nie, Shudi Luo, Leina Ma, Ren-an Jin, Zhimin Lu
{"title":"OXCT1 succinylation and activation by SUCLA2 promotes ketolysis and liver tumor growth","authors":"Dong Guo, Qiujing Yu, Yingying Tong, Xu Qian, Ying Meng, Fei Ye, Xiaoming Jiang, Lihui Wu, Qingqing Yang, Suyao Li, Min Li, Qingang Wu, Liwei Xiao, Xuxiao He, Rongxuan Zhu, Guijun Liu, Dou Nie, Shudi Luo, Leina Ma, Ren-an Jin, Zhimin Lu","doi":"10.1016/j.molcel.2024.12.025","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.12.025","url":null,"abstract":"Ketone bodies generated in hepatocytes in the adult liver are used for nonhepatic tissues as an energy source. However, ketolysis is reactivated in hepatocellular carcinoma (HCC) cells with largely unelucidated mechanisms. Here, we demonstrate that 3-oxoacid CoA-transferase 1 (OXCT1), a rate-limiting enzyme in ketolysis, interacts with SUCLA2 upon IGF1 stimulation in HCC cells. This interaction results from ERK2-mediated SUCLA2 S124 phosphorylation and subsequent PIN1-mediated <em>cis-trans</em> isomerization of SUCLA2. OXCT1-associated SUCLA2 generates succinyl-CoA, which not only serves as a substrate for OXCT1 but also directly succinylates OXCT1 at K421 and activates OXCT1. SUCLA2-regulated OXCT1 activation substantially enhances ketolysis, HCC cell proliferation, and tumor growth in mice. Notably, treatment with acetohydroxamic acid, an OXCT1 inhibitor used clinically for urinary infection, inhibits liver tumor growth in mice and significantly enhances lenvatinib therapy. Our findings highlight the role of SUCLA2-coupled regulation of OXCT1 succinylation in ketolysis and unveil an unprecedented strategy for treating HCC by interrupting ketolysis.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"110 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytoplasmic mRNA decay controlling inflammatory gene expression is determined by pre-mRNA fate decision
IF 16 1区 生物学
Molecular Cell Pub Date : 2025-01-24 DOI: 10.1016/j.molcel.2025.01.001
Annika Bestehorn, Julius von Wirén, Christina Zeiler, Jeanne Fesselet, Sebastian Didusch, Maurizio Forte, Kevin Doppelmayer, Martina Borroni, Anita Le Heron, Sara Scinicariello, WeiQiang Chen, Manuela Baccarini, Vera Pfanzagl, Gijs A. Versteeg, Markus Hartl, Pavel Kovarik
{"title":"Cytoplasmic mRNA decay controlling inflammatory gene expression is determined by pre-mRNA fate decision","authors":"Annika Bestehorn, Julius von Wirén, Christina Zeiler, Jeanne Fesselet, Sebastian Didusch, Maurizio Forte, Kevin Doppelmayer, Martina Borroni, Anita Le Heron, Sara Scinicariello, WeiQiang Chen, Manuela Baccarini, Vera Pfanzagl, Gijs A. Versteeg, Markus Hartl, Pavel Kovarik","doi":"10.1016/j.molcel.2025.01.001","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.01.001","url":null,"abstract":"The fidelity of immune responses depends on timely controlled and selective mRNA degradation that is largely driven by RNA-binding proteins (RBPs). It remains unclear whether stochastic or directed processes govern the selection of an individual mRNA molecule for degradation. Using human and mouse cells, we show that tristetraprolin (TTP, also known as ZFP36), an essential anti-inflammatory RBP, destabilizes target mRNAs via a hierarchical molecular assembly. The assembly formation strictly relies on the interaction of TTP with RNA. The TTP homolog ZFP36L1 exhibits similar requirements, indicating a broader relevance of this regulatory program. Unexpectedly, the assembly of the cytoplasmic mRNA-destabilization complex is licensed in the nucleus by TTP binding to pre-mRNA, which we identify as the principal TTP target rather than mRNA. Hence, the fate of an inflammation-induced mRNA is decided concomitantly with its synthesis. This mechanism prevents the translation of excessive and potentially harmful inflammation mediators, irrespective of transcription.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"34 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microexon in action: How tiny fragments in a protein tune function, drive disease 微外显子的作用:蛋白质中的微小片段如何调节功能,驱动疾病
IF 16 1区 生物学
Molecular Cell Pub Date : 2025-01-16 DOI: 10.1016/j.molcel.2024.12.022
Jie-rong Huang
{"title":"Microexon in action: How tiny fragments in a protein tune function, drive disease","authors":"Jie-rong Huang","doi":"10.1016/j.molcel.2024.12.022","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.12.022","url":null,"abstract":"Intrinsically disordered regions (IDRs) of proteins can regulate function through phase separation. In a recent article in <em>Nature</em>, Garcia-Cabau et al. reveal that including or excluding a microexon within the IDR of CPEB4 alters its condensation properties, suggesting a potential mechanism underlying autism spectrum disorder.<span><span><sup>1</sup></span></span>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"51 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular determinants of condensate composition 冷凝物组成的分子决定因素
IF 16 1区 生物学
Molecular Cell Pub Date : 2025-01-16 DOI: 10.1016/j.molcel.2024.12.021
Alex S. Holehouse, Simon Alberti
{"title":"Molecular determinants of condensate composition","authors":"Alex S. Holehouse, Simon Alberti","doi":"10.1016/j.molcel.2024.12.021","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.12.021","url":null,"abstract":"Cells use membraneless compartments to organize their interiors, and recent research has begun to uncover the molecular principles underlying their assembly. Here, we explore how site-specific and chemically specific interactions shape the properties and functions of condensates. Site-specific recruitment involves precise interactions at specific sites driven by partially or fully structured interfaces. In contrast, chemically specific recruitment is driven by complementary chemical interactions without the requirement for a persistent bound-state structure. We propose that site-specific and chemically specific interactions work together to determine the composition of condensates, facilitate biochemical reactions, and regulate enzymatic activities linked to metabolism, signaling, and gene expression. Characterizing the composition of condensates requires novel experimental and computational tools to identify and manipulate the molecular determinants guiding condensate recruitment. Advancing this research will deepen our understanding of how condensates regulate cellular functions, providing valuable insights into cellular physiology and organization.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"19 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nucleic acid recognition during prokaryotic immunity 原核免疫过程中的核酸识别
IF 16 1区 生物学
Molecular Cell Pub Date : 2025-01-16 DOI: 10.1016/j.molcel.2024.12.007
Christian F. Baca, Luciano A. Marraffini
{"title":"Nucleic acid recognition during prokaryotic immunity","authors":"Christian F. Baca, Luciano A. Marraffini","doi":"10.1016/j.molcel.2024.12.007","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.12.007","url":null,"abstract":"Parasitic elements often spread to hosts through the delivery of their nucleic acids to the recipient. This is particularly true for the primary parasites of bacteria, bacteriophages (phages) and plasmids. Although bacterial immune systems can sense a diverse set of infection signals, such as a protein unique to the invader or the disruption of natural host processes, phage and plasmid nucleic acids represent some of the most common molecules that are recognized as foreign to initiate defense. In this review, we will discuss the various elements of invader nucleic acids that can be distinguished by bacterial host immune systems as “non-self” and how this signal is relayed to activate an immune response.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"10 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ubiquitin—A structural perspective 泛素a结构的观点
IF 16 1区 生物学
Molecular Cell Pub Date : 2025-01-16 DOI: 10.1016/j.molcel.2024.12.015
Rashmi Agrata, David Komander
{"title":"Ubiquitin—A structural perspective","authors":"Rashmi Agrata, David Komander","doi":"10.1016/j.molcel.2024.12.015","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.12.015","url":null,"abstract":"The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques. Here, we review the current knowledge of ubiquitin signals through a ubiquitin-centric, structural biology lens. We amalgamate the information from 240 structures in the Protein Data Bank (PDB), combined with single-molecule, molecular dynamics, and nuclear magnetic resonance (NMR) studies, to provide a comprehensive picture of ubiquitin and polyubiquitin structures and dynamics. We close with a discussion of the latest frontiers in ubiquitin research, namely the modification of ubiquitin by other post-translational modifications (PTMs) and the notion that ubiquitin is attached to biomolecules beyond proteins.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"96 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic histone modification patterns coordinating DNA processes 动态组蛋白修饰模式协调DNA过程
IF 16 1区 生物学
Molecular Cell Pub Date : 2025-01-16 DOI: 10.1016/j.molcel.2024.10.034
Laura López-Hernández, Patrick Toolan-Kerr, Andrew J. Bannister, Gonzalo Millán-Zambrano
{"title":"Dynamic histone modification patterns coordinating DNA processes","authors":"Laura López-Hernández, Patrick Toolan-Kerr, Andrew J. Bannister, Gonzalo Millán-Zambrano","doi":"10.1016/j.molcel.2024.10.034","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.10.034","url":null,"abstract":"Significant effort has been spent attempting to unravel the causal relationship between histone post-translational modifications and fundamental DNA processes, including transcription, replication, and repair. However, less attention has been paid to understanding the reciprocal influence—that is, how DNA processes, in turn, shape the distribution and patterns of histone modifications and how these changes convey information, both temporally and spatially, from one process to another. Here, we review how histone modifications underpin the widespread bidirectional crosstalk between different DNA processes, which allow seemingly distinct phenomena to operate as a unified whole.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"41 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging the gap: How enhancers cooperate to regulate gene expression over large genomic distances 弥合差距:增强子如何在大基因组距离上合作调节基因表达
IF 16 1区 生物学
Molecular Cell Pub Date : 2025-01-16 DOI: 10.1016/j.molcel.2024.12.001
Dimitra Tsouraki, A. Marieke Oudelaar
{"title":"Bridging the gap: How enhancers cooperate to regulate gene expression over large genomic distances","authors":"Dimitra Tsouraki, A. Marieke Oudelaar","doi":"10.1016/j.molcel.2024.12.001","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.12.001","url":null,"abstract":"By building synthetic regulatory landscapes, Jensen et al.<span><span><sup>1</sup></span></span> and Thomas et al.<span><span><sup>2</sup></span></span> demonstrate in this issue of <em>Molecular Cell</em> that gene expression levels strongly depend on the genomic distance between enhancers and promoters and that enhancer cooperation can compensate for reduced enhancer activity over large genomic distances.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"17 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信