{"title":"Investigation of the effects of nanoplastic polyethylene terephthalate on environmental toxicology using model <i>Drosophila melanogaster</i>.","authors":"Samir Bauri, Himanshu Shekhar, Harekrushna Sahoo, Monalisa Mishra","doi":"10.1080/17435390.2024.2368004","DOIUrl":"10.1080/17435390.2024.2368004","url":null,"abstract":"<p><p>Plastic pollution has become a major environmental concern, and various plastic polymers are used daily. A study was conducted to examine the toxic effects of polyethylene terephthalate (PET) nanoplastics (NPLs) on Drosophila melanogaster. We have successfully synthesized PET NPLs and characterized using DLS, Zeta potential, TEM, HRTEM, SAED, XRD, FTIR, and Raman spectroscopy to gain crucial insights into the structure and properties. We fed PET NPLs to Drosophila to assess toxicity. ROS was quantified using DCFH-DA and NBT, and the nuclear degradation was checked by DAPI staining. Quantification of protein and activity of antioxidant enzymes like SOD, catalase depicted the adverse consequences of PET NPLs exposure. The dorsal side of the abdomens, eyes, and wings were also defective when phenotypically analyzed. These results substantiate the genotoxic and cytotoxic impact of nanoplastics. Notably, behavioral observations encompassing larval crawling and climbing of adults exhibit normal patterns, excluding the presence of neurotoxicity. Adult Drosophila showed decreased survivability, and fat accumulation enhanced body weight. These findings contribute to unraveling the intricate mechanisms underlying nanoplastic toxicity and emphasize its potential repercussions for organismal health and ecological equilibrium.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"354-372"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotoxicologyPub Date : 2024-06-01Epub Date: 2024-07-25DOI: 10.1080/17435390.2024.2379809
James Butler, Sian Morgan, Lewis Jones, Mathew Upton, Alexandros Besinis
{"title":"Evaluating the antibacterial efficacy of a silver nanocomposite surface coating against nosocomial pathogens as an antibiofilm strategy to prevent hospital infections.","authors":"James Butler, Sian Morgan, Lewis Jones, Mathew Upton, Alexandros Besinis","doi":"10.1080/17435390.2024.2379809","DOIUrl":"10.1080/17435390.2024.2379809","url":null,"abstract":"<p><p>Antimicrobial nanocoatings may be a means of preventing nosocomial infections, which account for significant morbidity and mortality. The role of hospital sink traps in these infections is also increasingly appreciated. We describe the preparation, material characterization and antibacterial activity of a pipe cement-based silver nanocoating applied to unplasticized polyvinyl chloride, a material widely used in wastewater plumbing. Three-dimensional surface topography imaging and scanning electron microscopy showed increased roughness in all surface finishes versus control, with grinding producing the roughest surfaces. Silver stability within nanocoatings was >99.89% in deionized water and bacteriological media seeded with bacteria. The nanocoating exhibited potent antibiofilm (99.82-100% inhibition) and antiplanktonic (99.59-99.99% killing) activity against three representative bacterial species and a microbial community recovered from hospital sink traps. Hospital sink trap microbiota were characterized by sequencing the 16S rRNA gene, revealing the presence of opportunistic pathogens from genera including <i>Pseudomonas</i>, <i>Enterobacter</i> and <i>Clostridioides</i>. In a benchtop model sink trap system, nanocoating antibiofilm activity against this community remained significant after 11 days but waned following 25 days. Silver nanocoated disks in real-world sink traps in two university buildings had a limited antibiofilm effect, even though <i>in vitro</i> experiments using microbial communities recovered from the same traps demonstrated that the nanocoating was effective, reducing biofilm formation by >99.6% and killing >98% of planktonic bacteria. We propose that conditioning films forming in the complex conditions of real-world sink traps negatively impact nanocoating performance, which may have wider relevance to development of antimicrobial nanocoatings that are not tested in the real-world.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"410-436"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent trends and advancement in metal oxide nanoparticles for the degradation of dyes: synthesis, mechanism, types and its application.","authors":"B Senthil Rathi, Lay Sheng Ewe, Sanjay S, Sujatha S, Weng Kean Yew, Baskaran R, Sieh Kiong Tiong","doi":"10.1080/17435390.2024.2349304","DOIUrl":"10.1080/17435390.2024.2349304","url":null,"abstract":"<p><p>Synthetic dyes play a crucial role in our daily lives, especially in clothing, leather accessories, and furniture manufacturing. Unfortunately, these potentially carcinogenic substances are significantly impacting our water systems due to their widespread use. Dyes from various sources pose a serious environmental threat owing to their persistence and toxicity. Regulations underscore the urgency in addressing this problem. In response to this challenge, metal oxide nanoparticles such as titanium dioxide (TiO<sub>2</sub>), zinc oxide (ZnO), and iron oxide (Fe<sub>3</sub>O<sub>4</sub>) have emerged as intriguing options for dye degradation due to their unique characteristics and production methods. This paper aims to explore the types of nanoparticles suitable for dye degradation, various synthesis methods, and the properties of nanoparticles. The study elaborates on the photocatalytic and adsorption-desorption activities of metal oxide nanoparticles, elucidating their role in dye degradation and their application potential. Factors influencing degradation, including nanoparticle properties and environmental conditions, are discussed. Furthermore, the paper provides relevant case studies, practical applications in water treatment, and effluent treatment specifically in the textile sector. Challenges such as agglomeration, toxicity concerns, and cost-effectiveness are acknowledged. Future advancements in nanomaterial synthesis, their integration with other materials, and their impact on environmental regulations are potential areas for development. In conclusion, metal oxide nanoparticles possess immense potential in reducing dye pollution, and further research and development are essential to define their role in long-term environmental management.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"272-298"},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotoxicologyPub Date : 2024-05-01Epub Date: 2024-05-29DOI: 10.1080/17435390.2024.2358781
Vera L Maria, Joana Santos, Marija Prodana, Diogo N Cardoso, Rui G Morgado, Mónica J B Amorim, Angela Barreto
{"title":"Toxicity mechanisms of plastic nanoparticles in three terrestrial species: antioxidant system imbalance and neurotoxicity.","authors":"Vera L Maria, Joana Santos, Marija Prodana, Diogo N Cardoso, Rui G Morgado, Mónica J B Amorim, Angela Barreto","doi":"10.1080/17435390.2024.2358781","DOIUrl":"10.1080/17435390.2024.2358781","url":null,"abstract":"<p><p>The detrimental impacts of plastic nanoparticles (PNPs) are a worldwide concern, although knowledge is still limited, in particular for soil mesofauna. This study investigates the biochemical impact of 44 nm polystyrene PNPs on three soil models-<i>Enchytraeus crypticus</i> (Oligochaeta), <i>Folsomia candida</i> (Collembola) and <i>Porcellionides pruinosus</i> (Isopoda). Exposure durations of 3, 7 and 14 days (d) were implemented at two concentrations (1.5 and 300 mg kg<sup>-1</sup> PNPs). Results revealed PNPs impact on the activities of the glutathione-dependent antioxidative enzyme, glutathione S-transferase (GST) and on the neurotransmitter acetylcholinesterase (AChE) for all three species. Catalase (CAT) played a minor role, primarily evident in <i>F. candida</i> at 300 mg kg<sup>-1</sup> PNPs (CAT and GST response after 14 d), with no lipid peroxidation (LPO) increase. Even with the antioxidant defence, <i>P. pruinosus</i> was the most sensitive species for lipid oxidative damage (LPO levels increased after 7 d exposure to 300 mg kg<sup>-1</sup> PNPs). Significant AChE inhibitions were measured already after 3 d to both PNP concentrations in <i>F. candida</i> and <i>E. crypticus</i>, respectively. Significant AChE inhibitions were also found in <i>P. pruinosus</i> but later (7 d). Overall, the toxicity mechanisms of PNPs involved antioxidant imbalance, being (mostly) the glutathione-associated metabolism part of that defence system. Neurotoxicity, linked to AChE activities, was evident across all species. Sensitivity to PNPs varied: <i>P. pruinosus</i> > <i>F. candida</i> ≅ <i>E. crypticus.</i> This pioneering study on PNPs toxicity in soil invertebrates underscores its environmental relevance, shedding light on altered biochemical responses, that may compromise ecological roles and soil ecosystem fitness.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"299-313"},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotoxicologyPub Date : 2024-04-22DOI: 10.1080/17435390.2024.2340467
Tahereh Zadeh Mehrizi, Nariman Mossafa, Mohammad Vodjgani, Hasan Ebrahimi Shahmabadi
{"title":"Advances in nanotechnology for improving the targeted delivery and activity of amphotericin B (2011–2023): a systematic review","authors":"Tahereh Zadeh Mehrizi, Nariman Mossafa, Mohammad Vodjgani, Hasan Ebrahimi Shahmabadi","doi":"10.1080/17435390.2024.2340467","DOIUrl":"https://doi.org/10.1080/17435390.2024.2340467","url":null,"abstract":"Amphotericin B (AmB) is a broad-spectrum therapeutic and effective drug, but it has serious side effects of toxicity and solubility. Therefore, reducing its toxicity should be considered in therape...","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"51 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotoxicologyPub Date : 2024-04-22DOI: 10.1080/17435390.2024.2341893
Marco Rizzo, Michele Bordignon, Paolo Bertoli, Giorgio Biasiol, Matteo Crosera, Greta Camilla Magnano, Giovanna Marussi, Corrado Negro, Francesca Larese Filon
{"title":"Exposure to gallium arsenide nanoparticles in a research facility: a case study using molecular beam epitaxy","authors":"Marco Rizzo, Michele Bordignon, Paolo Bertoli, Giorgio Biasiol, Matteo Crosera, Greta Camilla Magnano, Giovanna Marussi, Corrado Negro, Francesca Larese Filon","doi":"10.1080/17435390.2024.2341893","DOIUrl":"https://doi.org/10.1080/17435390.2024.2341893","url":null,"abstract":"We evaluated GaAs nanoparticle-concentrations in the air and on skin and surfaces in a research facility that produces thin films, and to monitored As in the urine of exposed worker. The survey was...","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"19 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotoxicologyPub Date : 2024-03-20DOI: 10.1080/17435390.2024.2323293
{"title":"Statement of Retraction: Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: Role of IκBα/NF-κB, MAPKs and mitochondrial signal","authors":"","doi":"10.1080/17435390.2024.2323293","DOIUrl":"https://doi.org/10.1080/17435390.2024.2323293","url":null,"abstract":"Published in Nanotoxicology (Ahead of Print, 2024)","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"35 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140169245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of sex-based differences in the immunotoxicity of silver nanoparticles.","authors":"Brandon Canup, Paul Rogers, Angel Paredes, Wimolnut Manheng, Beverly Lyn-Cook, Tariq Fahmi","doi":"10.1080/17435390.2024.2323070","DOIUrl":"10.1080/17435390.2024.2323070","url":null,"abstract":"<p><p>The growing application of silver nanoparticles (AgNPs) in consumer, healthcare, and industrial products has raised concern over potential health implications due to increasing exposure. The evaluation of the immune response to nanomaterials is one of the key criteria to assess their biocompatibility. There are well-recognized sex-based differences in innate and adaptive immune responses. However, there is limited information available using human models. The aim was to investigate the potential sex-based differences in immune functions after exposure to AgNPs using human peripheral blood mononuclear cells (PBMCs) and plasma from healthy donors. These functions include inflammasome activation, cytokine expression, leukocyte proliferation, chemotaxis, plasma coagulation, and complement activation. AgNPs were characterized by dynamic light scattering and transmission electron microscopy. Inflammasome activation by AgNPs was measured after 6- and 24-hours incubations. AgNPs-induced inflammasome activation was significantly higher in the females, especially for the 6-hour exposure. No sex-based differences were observed for Ag ions controls. Younger donors exhibited significantly more inflammasome activation than older donors after 24-hours exposure. IL-10 was significantly suppressed in males and females after exposure. AgNPs suppressed leukocyte proliferation similarly in males and females. No chemoattractant effects, no alterations in plasma coagulation, or activation of the complement were observed after AgNPs exposure. In conclusion, the results highlight that there are distinct sex-based differences in inflammasome activation after exposure to AgNPs in human PBMCs. The results highlight the importance of considering sex-based differences in inflammasome activation induced by exposure to AgNPs in any future biocompatibility assessment for products containing AgNPs.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"134-159"},"PeriodicalIF":3.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotoxicologyPub Date : 2024-03-01Epub Date: 2024-02-29DOI: 10.1080/17435390.2024.2321873
Kornelia Serwatowska, Tom A P Nederstigt, Willie J G M Peijnenburg, Martina G Vijver
{"title":"Chronic toxicity of core-shell SiC/TiO<sub>2</sub> (nano)-particles to <i>Daphnia magna</i> under environmentally relevant food rations in the presence of humic acid.","authors":"Kornelia Serwatowska, Tom A P Nederstigt, Willie J G M Peijnenburg, Martina G Vijver","doi":"10.1080/17435390.2024.2321873","DOIUrl":"10.1080/17435390.2024.2321873","url":null,"abstract":"<p><p>To date, research on the toxicity and potential environmental impacts of nanomaterials has predominantly focused on relatively simple and single-component materials, whilst more complex nanomaterials are currently entering commercial stages. The current study aimed to assess the long-term and size-dependent (60 and 500 nm) toxicity of a novel core-shell nanostructure consisting of a SiC core and TiO<sub>2</sub> shell (SiC/TiO<sub>2</sub>, 5, 25, and 50 mg L<sup>-1</sup>) to the common model organism <i>Daphnia magna</i>. These novel core-shell nanostructures can be categorized as advanced materials. Experiments were conducted under environmentally realistic feeding rations and in the presence of a range of concentrations of humic acid (0.5, 2, 5, and 10 mg L<sup>-1</sup> TOC). The findings show that although effect concentrations of SiC/TiO<sub>2</sub> were several orders of magnitude lower than the current reported environmental concentrations of more abundantly used nanomaterials, humic acid can exacerbate the toxicity of SiC/TiO<sub>2</sub> by reducing aggregation and sedimentation rates. The EC<sub>50</sub> values (mean ± standard error) based on nominal SiC/TiO<sub>2</sub> concentrations for the 60 nm particles were 28.0 ± 11.5 mg L<sup>-1</sup> (TOC 0.5 mg L<sup>-1</sup>), 21.1 ± 3.7 mg L<sup>-1</sup> (TOC 2 mg L<sup>-1</sup>), 18.3 ± 5.4 mg L<sup>-1</sup> (TOC 5 mg L<sup>-1</sup>), and 17.8 ± 2.4 mg L<sup>-1</sup> (TOC 10 mg L<sup>-1</sup>). For the 500 nm particles, the EC50 values were 34.9 ± 16.5 mg L<sup>-1</sup> (TOC 0.5 mg L<sup>-1</sup>), 24.8 ± 5.6 mg L<sup>-1</sup> (TOC 2 mg L<sup>-1</sup>), 28.0 ± 10.0 mg L<sup>-1</sup> (TOC 5 mg L<sup>-1</sup>), and 23.2 ± 4.1 mg L<sup>-1</sup> (TOC 10 mg L<sup>-1</sup>). We argue that fate-driven phenomena are often neglected in effect assessments, whilst environmental factors such as the presence of humic acid may significantly influence the toxicity of nanomaterials.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"107-118"},"PeriodicalIF":3.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotoxicologyPub Date : 2024-03-01Epub Date: 2024-03-04DOI: 10.1080/17435390.2024.2323069
Francisco Correa Segura, Fernanda Isabel Macías Macías, Kimberly Abigaíl Velázquez Delgado, María Del Pilar Ramos-Godinez, Angélica Ruiz-Ramírez, Pedro Flores, Elizabeth Huerta-García, Rebeca López-Marure
{"title":"Food-grade titanium dioxide (E171) and zinc oxide nanoparticles induce mitochondrial permeability and cardiac damage after oral exposure in rats.","authors":"Francisco Correa Segura, Fernanda Isabel Macías Macías, Kimberly Abigaíl Velázquez Delgado, María Del Pilar Ramos-Godinez, Angélica Ruiz-Ramírez, Pedro Flores, Elizabeth Huerta-García, Rebeca López-Marure","doi":"10.1080/17435390.2024.2323069","DOIUrl":"10.1080/17435390.2024.2323069","url":null,"abstract":"<p><p>Food-grade titanium dioxide (E171) and zinc oxide nanoparticles (ZnO NPs) are found in diverse products for human use. E171 is used as whitening agent in food and cosmetics, and ZnO NPs in food packaging. Their potential multi-organ toxicity has raised concerns on their safety. Since mitochondrial dysfunction is a key aspect of cardio-pathologies, here, we evaluate the effect of chronic exposure to E171 and ZnO NPs in rats on cardiac mitochondria. Changes in cardiac electrophysiology and body weight were measured. E171 reduced body weight more than 10% after 5 weeks. Both E171 and ZnO NPs increased systolic blood pressure (SBP) from 110-120 to 120-140 mmHg after 45 days of treatment. Both NPs altered the mitochondrial permeability transition pore (mPTP), reducing calcium requirement for permeability by 60% and 93% in E171- and ZnO NPs-exposed rats, respectively. Treatments also affected conformational state of adenine nucleotide translocase (ANT). E171 reduced the binding of EMA to Cys 159 in 30% and ZnO NPs in 57%. Mitochondrial aconitase activity was reduced by roughly 50% with both NPs, indicating oxidative stress. Transmission electron microscopy (TEM) revealed changes in mitochondrial morphology including sarcomere discontinuity, edema, and hypertrophy in rats exposed to both NPs. In conclusion, chronic oral exposure to NPs induces functional and morphological damage in cardiac mitochondria, with ZnO NPs being more toxic than E171, possibly due to their dissociation in free Zn<sup>2+</sup> ion form. Therefore, chronic intake of these food additives could increase risk of cardiovascular disease.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"122-133"},"PeriodicalIF":5.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140022216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}