Molecular Biotechnology最新文献

筛选
英文 中文
Study of Pineapple Bioactive Compounds Targeting Aldose Reductase: A Natural Intervention for Diabetes Mellitus Pathologies.
IF 2.4 4区 生物学
Molecular Biotechnology Pub Date : 2025-02-01 DOI: 10.1007/s12033-025-01380-1
Anand Kumar Pandey, Shalja Verma, Rupanjali Singh
{"title":"Study of Pineapple Bioactive Compounds Targeting Aldose Reductase: A Natural Intervention for Diabetes Mellitus Pathologies.","authors":"Anand Kumar Pandey, Shalja Verma, Rupanjali Singh","doi":"10.1007/s12033-025-01380-1","DOIUrl":"https://doi.org/10.1007/s12033-025-01380-1","url":null,"abstract":"<p><p>Aldose reductase is a reduced monomeric enzyme that utilizes NADPH as a cofactor to mediate the glucose reduction to sorbitol in the polyol pathway. Overexpression of aldose reductase has been observed to mediate pathologies associated with diabetes mellitus. Inhibition of aldose reductase thus seems promising to deal with these pathologies. Pineapple and its extract have been identified for its anti-diabetic effect due to the presence of effective bioactive agents. In the present study, the major bioactive compounds of pineapple have been studied for their potential to structurally inhibit aldose reductase. The ADMET analysis of lead bioactive compounds including myrcene, palmitic acid, limonene, n-decanal, beta-carophyllene, 1-cyclohexane-1-caboxaldehyde, and α-farnesene showed most of the compounds were non-toxic and have druglike properties with LD50 values of greater than 2000 mg/kg. Molecular docking of these compounds at the substrate binding site of the aldose reductase-NADPH complex disclosed effective binding with binding energy values of - 5.025 to - 8.003 kcal/mol. α-farnesene, known for its antibacterial, antiviral, and anti-inflammatory properties gave the highest binding energy of - 8.003 kcal/mol. The molecular dynamic simulation studies of α-farnesene-aldose reductase-NADPH ternary complex, aldose reductase-NADPH binary complex, and apo-aldose reductase revealed similar RMSD values with respect to time during the simulation trajectory indicating stable interaction of the compound with the enzyme. DFT analysis showed high reactivity of α-farnesene which favours its utilization as a drug for specific target protein. Therefore, this study provides an efficient natural aldose reductase inhibitor α-farnesene that can be further explored for its potential to develop an effective natural drug to treat diabetes.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143074864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and Functional Characterization of Obesumbacterium proteus Phytase: A Comprehensive In-Silico Study. Obesumbacterium proteus 植酸酶的结构和功能特性:一项全面的模拟研究。
IF 2.4 4区 生物学
Molecular Biotechnology Pub Date : 2025-02-01 Epub Date: 2024-02-23 DOI: 10.1007/s12033-024-01069-x
Asmita Kamble, Rajkumar Singh, Harinder Singh
{"title":"Structural and Functional Characterization of Obesumbacterium proteus Phytase: A Comprehensive In-Silico Study.","authors":"Asmita Kamble, Rajkumar Singh, Harinder Singh","doi":"10.1007/s12033-024-01069-x","DOIUrl":"10.1007/s12033-024-01069-x","url":null,"abstract":"<p><p>Phytate, also known as myoinositol hexakisphosphate, exhibits anti-nutritional properties and possesses a negative environmental impact. Phytase enzymes break down phytate, showing potential in various industries, necessitating thorough biochemical and computational characterizations. The present study focuses on Obesumbacterium proteus phytase (OPP), indicating its similarities with known phytases and its potential through computational analyses. Structure, functional, and docking results shed light on OPP's features, structural stability, strong and stable interaction, and dynamic conformation, with flexible sidechains that could adapt to different temperatures or specific functions. Root Mean Square fluctuation (RMSF) highlighted fluctuating regions in OPP, indicating potential sites for stability enhancement through mutagenesis. The systematic approach developed here could aid in enhancing enzyme properties via a rational engineering approach. Computational analysis expedites enzyme discovery and engineering, complementing the traditional biochemical methods to accelerate the quest for superior enzymes for industrial applications.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"588-616"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139932066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FDA-Approved Chimeric Antigen Receptor (CAR)-T Cell Therapy for Different Cancers-A Recent Perspective. 针对不同癌症的 FDA 批准嵌合抗原受体(CAR)-T 细胞疗法--最新视角。
IF 2.4 4区 生物学
Molecular Biotechnology Pub Date : 2025-02-01 Epub Date: 2024-03-08 DOI: 10.1007/s12033-024-01090-0
R Thirumalaisamy, S Vasuki, S M Sindhu, T M Mothilal, V Srimathi, B Poornima, M Bhuvaneswari, Mohan Hariharan
{"title":"FDA-Approved Chimeric Antigen Receptor (CAR)-T Cell Therapy for Different Cancers-A Recent Perspective.","authors":"R Thirumalaisamy, S Vasuki, S M Sindhu, T M Mothilal, V Srimathi, B Poornima, M Bhuvaneswari, Mohan Hariharan","doi":"10.1007/s12033-024-01090-0","DOIUrl":"10.1007/s12033-024-01090-0","url":null,"abstract":"<p><p>Cancer is one of the most prevalent diseases in the world, and their rate of occurence has been increased in recent decades. Current review article, summarizes the novel treatment options Chimeric Antigen Receptor-T (CAR-T) cell therapy for various cancers constitute a major health and development challenge, impacting every aspect of sustainable development quoted by goal 3 good health and well-being of UN sustainable goals. WHO estimates that 70% of cancer deaths occur in low- and middle- income countries (LMICs) by 2030, LMICs are expected to bear the brunt of the expected 24.1 million new cancer cases per year. This current review article focuses and discussed about CAR-T cell therapy for various cancers against most prevalent non-communicable disease cancer disease stipulated by WHO and UN sustainable goals. Three literature databases Google scholar, Science Direct, PubMed was utilized to search and collect CAR-T cell treatment options for different cancers published articles sources in between January 2000 and December 2023. There were a total of 18,700 papers found, with 48 of them being found to be eligible focusing various cancer treatment by CAR-T cells utilized for the study. Based on the information gathered, CAR-T cell therapy treating different cancers and their merit and its advantages in heal and improve certain cancers was also discussed in this review article with their detailed molecular mechanisms. This article also gives an insight to utilize CAR-T cell treatment protocols for rejuvenating cancer patient from such ruthless cancer disease condition thereby improving life span of cancer patients and eradication of disease in some cases.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"469-483"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrin β4 Regulates Cell Migration of Lung Adenocarcinoma Through FAK Signaling. 整合素β4通过FAK信号调控肺腺癌的细胞迁移
IF 2.4 4区 生物学
Molecular Biotechnology Pub Date : 2025-02-01 Epub Date: 2024-02-08 DOI: 10.1007/s12033-024-01061-5
Shusen Zhang, Chengyu Liu, Dengxiang Liu, Xuecong Ning, Hui Li, Xiaochong Zhang, Yuanyuan Lu, Ping Zhang, Shubo Chen, Zhigang Cai
{"title":"Integrin β4 Regulates Cell Migration of Lung Adenocarcinoma Through FAK Signaling.","authors":"Shusen Zhang, Chengyu Liu, Dengxiang Liu, Xuecong Ning, Hui Li, Xiaochong Zhang, Yuanyuan Lu, Ping Zhang, Shubo Chen, Zhigang Cai","doi":"10.1007/s12033-024-01061-5","DOIUrl":"10.1007/s12033-024-01061-5","url":null,"abstract":"<p><p>The role of the integrin family in malignancy has received increasing attention. Many studies have confirmed that ITGB4 could activate multiple signal pathways and promote cell migration in various cancers. However, the regulatory role of integrin β4 (ITGB4) in lung adenocarcinoma (LUAD) is still unclear. Examination of the expression or survival analysis of ITGB4 in cells, pathological samples, and bioinformatics lung adenocarcinoma databases showed ITGB4 was highly expressed in LUAD and significantly associated with poor prognosis. Small interfering RNA and plasmids were performed to investigate the effect of changes in ITGB4 expression on lung adenocarcinoma. Focal adhesion kinase (FAK) inhibitor defactinib was used to further explore the molecular mechanism of ITGB4. The results showed depletion of ITGB4 inhibited migration and activation of FAK signaling pathways in lung adenocarcinoma cells. Moreover, increased ITGB4 expression activated FAK signaling and promoted cell migration, which can be reversed by defactinib. In addition, ITGB4 could interact with FAK in lung adenocarcinoma cells. ITGB4 may promote cell migration of lung adenocarcinoma through FAK signaling pathway and has the potential to be a biomarker for lung adenocarcinoma.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"496-509"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139707238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Polyclonal Antibodies-Based Serological Method for the Detection of Calanthe Mild Mosaic Virus and Application in Virus Certification Programme. 开发基于多克隆抗体的血清学方法,用于检测灯盏花淡色花叶病毒并将其应用于病毒认证计划。
IF 2.4 4区 生物学
Molecular Biotechnology Pub Date : 2025-02-01 Epub Date: 2024-02-16 DOI: 10.1007/s12033-024-01074-0
Nishant Srivastava, Rakesh Kumar, Reetika Kapoor, Ashwini Kumar, Susheel K Sharma, Nitika Gupta, Pooja Bhardwaj, Gopi Kishan, Rajendra P Pant, Virendra K Baranwal
{"title":"Development of Polyclonal Antibodies-Based Serological Method for the Detection of Calanthe Mild Mosaic Virus and Application in Virus Certification Programme.","authors":"Nishant Srivastava, Rakesh Kumar, Reetika Kapoor, Ashwini Kumar, Susheel K Sharma, Nitika Gupta, Pooja Bhardwaj, Gopi Kishan, Rajendra P Pant, Virendra K Baranwal","doi":"10.1007/s12033-024-01074-0","DOIUrl":"10.1007/s12033-024-01074-0","url":null,"abstract":"<p><p>Calanthe mild mosaic virus (CalMMV) infecting orchids is an important potyvirus which is known to cause mild leaf mosaic and flower colour-breaking symptoms in Calanthe and other orchid plants. The present study reports the production of polyclonal antibodies against CalMMV using bacterially expressed recombinant coat protein as immunogen, which in turn would be useful in routine indexing and screening of orchid germplasm. The coat protein (CP) gene (~ 807 bp) of CalMMV isolated from infected orchid sample was cloned in expression vector, pET-28a ( +) that yielded ~ 31 kDa fusion protein with Histidine tag (His<sub>6</sub>BP). The expression of fusion CP was confirmed through SDS-PAGE and Western blotting. The His<sub>6</sub>BP-CalMMV-CP obtained in soluble state after purification was used to immunize New Zealand white rabbit for the production of polyclonal antibodies (PAb). The PAb produced against the purified fusion protein successfully detected CAlMMV in the orchid samples at a dilution of 1:2000 in direct antigen-coated enzyme-linked immunosorbent assay (DAC-ELISA). This study presents the first report of Histidine tag (His<sub>6</sub>BP) fusion CalMMV-CP-based antibody production and its successful application in the identification of the virus in orchid plants. Outcome of this study will be helpful in routine certification programmes, screening of orchid germplasm and production of CalMMV-free planting materials of orchids.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"628-637"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139747038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Camelina sativa Seeds as a Green Bioreactor for the Production of Affordable Human Pro-insulin that Demonstrates Anti-diabetic Efficacy in Rats. 将荠菜种子改造成绿色生物反应器,用于生产可在大鼠体内显示抗糖尿病功效的廉价人促胰岛素。
IF 2.4 4区 生物学
Molecular Biotechnology Pub Date : 2025-02-01 Epub Date: 2024-02-18 DOI: 10.1007/s12033-024-01068-y
Sapna Bhoria, Priyanka Saini, Darshna Chaudhary, Ranjana Jaiwal, Pawan K Jaiwal
{"title":"Engineering Camelina sativa Seeds as a Green Bioreactor for the Production of Affordable Human Pro-insulin that Demonstrates Anti-diabetic Efficacy in Rats.","authors":"Sapna Bhoria, Priyanka Saini, Darshna Chaudhary, Ranjana Jaiwal, Pawan K Jaiwal","doi":"10.1007/s12033-024-01068-y","DOIUrl":"10.1007/s12033-024-01068-y","url":null,"abstract":"<p><p>The current production of recombinant insulin via fermenter-based platforms (Escherichia coli and yeast) could not fulfill its fast-growing commercial demands, thus leading to a great interest in its sustainable large-scale production at low cost using a plant-based system. In the present study, Agrobacterium tumefaciens-mediated nuclear stable genetic transformation of an industrial oilseed crop, Camelina sativa, to express pro-insulin (with three furin endoprotease cleavage sites) fused with cholera toxin B subunit (CTB) in their seeds was successfully achieved for the first time. The bar gene was used as a selectable marker for selecting transformants and producing herbicide-resistant camelina plants. The transformation process involved the infiltration of camelina inflorescences (at flower buds with partially opened flowers) with A. tumefaciens and harvesting the seeds (T<sub>0</sub>) at maturity. The T<sub>0</sub> seeds were raised into the putative T<sub>1</sub> plants sprayed with Basta herbicide (0.03%, v/v), and the survived green transformed plants tested positive for pro-insulin and bar genes. A transformation frequency of 6.96% was obtained. The integration and copy number of the pro-insulin transgene and its expression at RNA and protein levels were confirmed in T<sub>1</sub> plants using Southern hybridization, semi-quantitative Reverse Transcriptase-Polymerase Chain Reaction (sqPCR), and quantitative real-time Time PCR (qPCR) and western blot analysis, respectively. Enzyme-linked immunosorbent Assay (ELISA) quantified the amount of expressed pro-insulin protein, and its anti-diabetic efficacy was validated in diabetic rats on oral feeding. Transgenic plants integrated the pro-insulin gene into their genomes and produced a maximum of 197 µg/100 mg of pro-insulin (0.804% of TSP) that had anti-diabetic efficacy in rats.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"575-587"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypoxia-Challenged Pancreatic Adenocarcinoma Cell-Derived Exosomal circR3HCC1L Drives Tumor Growth Via Upregulating PKM2 Through Sequestering miR-873-5p. 缺氧挑战下胰腺腺癌细胞衍生的外泌体 circR3HCC1L 通过螯合 miR-873-5p 上调 PKM2 推动肿瘤生长
IF 2.4 4区 生物学
Molecular Biotechnology Pub Date : 2025-02-01 Epub Date: 2024-03-25 DOI: 10.1007/s12033-024-01091-z
Luoluo Wang, Shuping Zhou, Yi Ruan, Xiang Wu, Xueming Zhang, Yi Li, Dongjian Ying, Yeting Lu, Yuan Tian, Gong Cheng, Jing Zhang, Kaiji Lv, Xinhua Zhou
{"title":"Hypoxia-Challenged Pancreatic Adenocarcinoma Cell-Derived Exosomal circR3HCC1L Drives Tumor Growth Via Upregulating PKM2 Through Sequestering miR-873-5p.","authors":"Luoluo Wang, Shuping Zhou, Yi Ruan, Xiang Wu, Xueming Zhang, Yi Li, Dongjian Ying, Yeting Lu, Yuan Tian, Gong Cheng, Jing Zhang, Kaiji Lv, Xinhua Zhou","doi":"10.1007/s12033-024-01091-z","DOIUrl":"10.1007/s12033-024-01091-z","url":null,"abstract":"<p><p>Pancreatic adenocarcinoma (PAAD) is a fatal disease with poor survival. Increasing evidence show that hypoxia-induced exosomes are associated with cancer progression. Here, we aimed to investigate the function of hsa_circ_0007678 (circR3HCC1L) and hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD progression. Through the exoRBase 2.0 database, we screened for a circular RNA circR3HCC1L related to PAAD. Changes of circR3HCC1L in PAAD samples and cells were analyzed with real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, migration, invasion were analyzed by colony formation, cell counting, and transwell assays. Measurements of glucose uptake and lactate production were done using corresponding kits. Several protein levels were detected by western blotting. The regulation mechanism of circR3HCC1L was verified by dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Exosomes were separated by differential ultracentrifugation. Animal experiments were used to verify the function of hypoxia-derived exosomal circR3HCC1L. CircR3HCC1L was upregulated in PAAD samples and hypoxic PAAD cells. Knockdown of circR3HCC1L decreased hypoxia-driven PAAD cell proliferation, migration, invasion, and glycolysis. Hypoxic PAAD cell-derived exosomes had higher levels of circR3HCC1L, hypoxic PAAD cell-derived exosomal circR3HCC1L promoted normoxic cancer cell malignant transformation and glycolysis in vitro and xenograft tumor growth in mouse models in vivo. Mechanistically, circR3HCC1L regulated pyruvate kinase M2 (PKM2) expression via sponging miR-873-5p. Also, PKM2 overexpression or miR-873-5p silencing offset circR3HCC1L knockdown-mediated effects on hypoxia-challenged PAAD cell malignant transformation and glycolysis. Hypoxic PAAD cell-derived exosomal circR3HCC1L facilitated PAAD progression through the miR-873-5p/PKM2 axis, highlighting the contribution of hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"762-777"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
O-sialoglycoprotein Endopeptidase (OSGEP) Suppresses Hepatic Ischemia-Reperfusion Injury-Induced Ferroptosis Through Modulating the MEK/ERK Signaling Pathway. O-sialoglycoprotein Endopeptidase (OSGEP) 通过调节 MEK/ERK 信号通路抑制肝脏缺血再灌注损伤诱导的铁蛋白沉积。
IF 2.4 4区 生物学
Molecular Biotechnology Pub Date : 2025-02-01 Epub Date: 2024-03-08 DOI: 10.1007/s12033-024-01084-y
Yuanyuan Tao, Wanqing Zhou, Cheng Chen, Qian Zhang, Zhuoyi Liu, Pingping Xia, Zhi Ye, Chunling Li
{"title":"O-sialoglycoprotein Endopeptidase (OSGEP) Suppresses Hepatic Ischemia-Reperfusion Injury-Induced Ferroptosis Through Modulating the MEK/ERK Signaling Pathway.","authors":"Yuanyuan Tao, Wanqing Zhou, Cheng Chen, Qian Zhang, Zhuoyi Liu, Pingping Xia, Zhi Ye, Chunling Li","doi":"10.1007/s12033-024-01084-y","DOIUrl":"10.1007/s12033-024-01084-y","url":null,"abstract":"<p><p>Hepatic ischemia-reperfusion injury (HIRI) was widely accepted as a critical complication of liver resection and transplantation. A growing body of evidence suggested that O-sialoglycoprotein endopeptidase (OSGEP) was involved in cell proliferation and mitochondrial metabolism. However, whether OSGEP could mediate the pathogenesis of HIRI has still remained unclarified. This study investigated whether OSGEP could be protective against HIRI and elucidated the potential mechanisms. The OSGEP expression level was detected in cases undergoing ischemia-related hepatectomy and a stable oxygen-glucose deprivation/reoxygenation (OGD/R) condition in hepG2 cells. Additionally, it was attempted to establish a mouse model of HIRI, thus, the function and mechanism of OSGEP could be analyzed. At one day after hepatectomy, the negative association of OSGEP expression level with the elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was noted. Moreover, it was attempted to carry out gain- and loss-of-function analyses of OSGEP in hepG2 cells to reveal its influences on OGD/R-induced injury and relevant signaling pathways. The findings suggested that OSGEP overexpression significantly protected hepG2 cells against ferroptotic cell death, while OSGEP consumption had opposite effects. Consistent with in vitro studies, OSGEP deficiency exacerbated liver functions and ferroptotic cell death in a mouse model of HIRI. The results also revealed that OSGEP mediated the progression of HIRI by regulating the MEK/ERK signaling pathway. Rescue experiments indicated that ERK1/2 knockdown or overexpression reversed the effects of OSGEP overexpression or knockdown on hepG2 cells under OGD/R condition. Taken together, the findings demonstrated that OSGEP could contribute to alleviate HIRI by mediating the MEK-ERK signaling pathway, which may serve as a potential prognostic marker and a therapeutic target for HIRI.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"689-704"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Messenger RNA Surveillance: Current Understanding, Regulatory Mechanisms, and Future Implications. 信使 RNA 监控:目前的理解、调节机制和未来的影响。
IF 2.4 4区 生物学
Molecular Biotechnology Pub Date : 2025-02-01 Epub Date: 2024-02-27 DOI: 10.1007/s12033-024-01062-4
Rutupurna Das, Gagan Kumar Panigrahi
{"title":"Messenger RNA Surveillance: Current Understanding, Regulatory Mechanisms, and Future Implications.","authors":"Rutupurna Das, Gagan Kumar Panigrahi","doi":"10.1007/s12033-024-01062-4","DOIUrl":"10.1007/s12033-024-01062-4","url":null,"abstract":"<p><p>Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism in eukaryotes primarily deployed to ensure RNA quality control by eliminating aberrant transcripts and also involved in modulating the expression of several physiological transcripts. NMD, the mRNA surveillance pathway, is a major form of gene regulation in eukaryotes. NMD serves as one of the most significant quality control mechanisms as it primarily scans the newly synthesized transcripts and differentiates the aberrant and non-aberrant transcripts. The synthesis of truncated proteins is restricted, which would otherwise lead to cellular dysfunctions. The up-frameshift factors (UPFs) play a central role in executing the NMD event, largely by recognizing and recruiting multiple protein factors that result in the decay of non-physiological mRNAs. NMD exhibits astounding variability in its ability across eukaryotes in an array of pathological and physiological contexts. The detailed understanding of NMD and the underlying molecular mechanisms remains blurred. This review outlines our current understanding of NMD, in regulating multifaceted cellular events during development and disease. It also attempts to identify unanswered questions that deserve further investigation.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"393-409"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR-324-3p Suppresses Hepatic Stellate Cell Activation and Hepatic Fibrosis Via Regulating SMAD4 Signaling Pathway. miR-324-3p 通过调节 SMAD4 信号通路抑制肝星状细胞活化和肝纤维化
IF 2.4 4区 生物学
Molecular Biotechnology Pub Date : 2025-02-01 Epub Date: 2024-02-26 DOI: 10.1007/s12033-024-01078-w
Si-Yu Chen, Xin Chen, Sai Zhu, Jin-Jin Xu, Xiao-Feng Li, Na-Na Yin, Yan-Yan Xiao, Cheng Huang, Jun Li
{"title":"miR-324-3p Suppresses Hepatic Stellate Cell Activation and Hepatic Fibrosis Via Regulating SMAD4 Signaling Pathway.","authors":"Si-Yu Chen, Xin Chen, Sai Zhu, Jin-Jin Xu, Xiao-Feng Li, Na-Na Yin, Yan-Yan Xiao, Cheng Huang, Jun Li","doi":"10.1007/s12033-024-01078-w","DOIUrl":"10.1007/s12033-024-01078-w","url":null,"abstract":"<p><p>In hepatic fibrosis (HF), hepatic stellate cells (HSCs) form the extracellular matrix (ECM), and the pathological accumulation of ECM in the liver leads to inflammation. Our previous research found that miR-324-3p was down-regulated in culture-activated human HSCs. However, the precise effect of miR-324-3p on HF has not been elucidated. In this study, the HF mouse models were induced through directly injecting carbon tetrachloride (CCl<sub>4</sub>) into mice; the HF cell models were constructed using TGF-β1-treated LX-2 cells. Next, real-time-quantitative polymerase chain reaction (RT-qPCR), western blot (WB) and immunohistochemistry (IHC) were applied to assess the expression levels of miR-324-3p, α-smooth muscle actin (α-SMA), Vimentin or SMAD4; hematoxylin and eosin (H&E), Masson' s trichrome and Sirius red staining to evaluate the liver injury; luciferase reporter assay to verify the targeting relationship between miR-324-3p and SMAD4; enzyme-linked immunosorbent assay (ELISA) to determine the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST); and cell counting kit-8 (CCK-8) and flow cytometry to evaluate the effects of miR-324-3p on cell proliferation and cycle/apoptosis, respectively. The experimental results showed a reduction in miR-324-3p level in CCl<sub>4</sub>-induced HF mice as well as transforming growth factor (TGF)-β1-activated HSCs. Interestingly, the miR-324-3p level was rescued following the HF recovery process. In HF mice induced by CCl<sub>4</sub>, miR-324-3p overexpression inhibited liver tissue damage, decreased serum ALT and AST levels, and inhibited fibrosis-related biomarkers (α-SMA, Vimentin) expression, thereby inhibiting HF. Similarly, miR-324-3p overexpression up-regulated α-SMA and Vimentin levels in HF cells, while knockdown of miR-324-3p had the opposite effect. Besides, miR-324-3p played an antifibrotic role through inhibiting the proliferation of hepatocytes. Further experiments confirmed that miR-324-3p targeted and down-regulated SMAD4 expression. SMAD4 was highly expressed in HF cells, and silencing SMAD4 significantly decreased the α-SMA and Vimentin levels in HF cells. Collectively, the miR-324-3p may suppress the activation of HSCs and HF by targeting SMAD4. Therefore, miR-324-3p is identified as a potential and novel therapeutic target for HF.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"673-688"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信