Mrs BulletinPub Date : 2024-04-04DOI: 10.1557/s43577-024-00695-9
Leonardo Giannini, Nima Razavi, Antonio Alvaro, Nicola Paltrinieri
{"title":"Embrittlement, degradation, and loss prevention of hydrogen pipelines","authors":"Leonardo Giannini, Nima Razavi, Antonio Alvaro, Nicola Paltrinieri","doi":"10.1557/s43577-024-00695-9","DOIUrl":"https://doi.org/10.1557/s43577-024-00695-9","url":null,"abstract":"<p>The detrimental effects induced by hydrogen on different materials—including steels—are a well-known and studied phenomenon. In the last century, several research papers focusing on hydrogen damages were published, including investigations concerning the hydrogen impact on the crack growth rate in steels subjected to cyclic loading. However, the past studies focused on material behavior and the role of external factors (e.g., pressure, temperature, stress field, microstructure, inhibitors, etc.), while the consequences of these findings on safety procedures and guidelines remain unspoken. The present work aims at investigating how the manifestation of the hydrogen degradation effect on equipment subjected to fatigue loadings may reflect on conventional safety practices. More accurately, a review of the parameters governing pipeline fatigue life is undertaken to analyze how such variables may lead to undesirable events and ultimately promoting a loss of containment scenario. In this sense, this work appeals for an evolution of the existing inspection methodologies for components that may experience fatigue failures (i.e., piping and pipeline systems), since the time-dependency of the detrimental effects induced by hydrogen should be considered in the operations of accident prevention and risk mitigation. Hence, the development of a preventive inspection and maintenance strategy specifically conceived for hydrogen technologies is essential to avoid the loss prevention of hydrogen systems. This will not only contribute to a quicker and larger scale spread of a hydrogen infrastructure, but it will also foster the energy-transition challenge that our society is facing today.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"126 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mrs BulletinPub Date : 2024-04-01Epub Date: 2022-11-27DOI: 10.1007/s12291-022-01101-4
Sahar A Abdel-Samed, Walaa G Hozyen, Saeed M Shaaban, Nabil A Hasona
{"title":"Biochemical Significance of miR-155 and miR-375 as Diagnostic Biomarkers and Their Correlation with the NF-κβ/TNF-α Axis in Breast Cancer.","authors":"Sahar A Abdel-Samed, Walaa G Hozyen, Saeed M Shaaban, Nabil A Hasona","doi":"10.1007/s12291-022-01101-4","DOIUrl":"10.1007/s12291-022-01101-4","url":null,"abstract":"<p><p>Serum microRNAs (miRs) have recently been proposed as potential cancer biomarkers for early detection. Thyroid hormones play a crucial role in human health, and their alterations are linked to a range of diseases, such as breast cancer. The relationship between NF-κβ, TNF-α, and non-coding RNAs is an urgent need for clinical trials. This study aimed to investigate serum expression folds of miR-155 and miR-375 and their correlations with NF-κβ and TNF-α in breast cancer patients. The current study was conducted on 183 unrelated female participants. Serum levels of free T3 and T4, as well as expression folds of miR-155 and miR-375, were significantly higher in patients with fibroadenoma and breast cancer, despite TSH being significantly lower. Additionally, the signaling of TNF-alpha and NF-κβ were found to be significantly upregulated in the serum of patients with breast cancer. Up-regulation of miR-155 and miR-375 expression may be diagnostic biomarkers of breast cancer, pointing to the role of NF-κβ and TNF-α expression in miR-155 and miR-375 expression as therapeutic targets of breast cancer in the future.</p>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"13 1","pages":"226-232"},"PeriodicalIF":2.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89362266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mrs BulletinPub Date : 2024-03-28DOI: 10.1557/s43577-024-00696-8
Maria L. Sushko
{"title":"Driving forces for particle-based crystallization: From experiments to theory and simulations","authors":"Maria L. Sushko","doi":"10.1557/s43577-024-00696-8","DOIUrl":"https://doi.org/10.1557/s43577-024-00696-8","url":null,"abstract":"<p>The multistep crystallization processes involving the formation of stable building blocks that subsequently assemble into a crystal are ubiquitous in mineral formation and biomineralization and are particularly attractive in materials synthesis. Utilizing these pathways offers the approach to overcoming the restrictions on the expression of various crystal faces imposed by the interfacial energy during monomer-by-monomer growth to unlock the breadth of architectures with unique properties. Controlling particle-based crystallization proved challenging despite its promise due to the complex interdependence of interfacial forces and their nonlinear dependence on synthesis parameters. Here, the status of the development of state-of-the-art approaches to measuring interparticle forces and predictive theoretical models of particle-based crystallization are reviewed.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"11 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mrs BulletinPub Date : 2024-03-28DOI: 10.1557/s43577-024-00688-8
Jeremy Schneider, Yasutaka Nagaoka, Hongyou Fan, Ou Chen
{"title":"Chemical and architectural intricacy from nanoscale tetrahedra and their analogues","authors":"Jeremy Schneider, Yasutaka Nagaoka, Hongyou Fan, Ou Chen","doi":"10.1557/s43577-024-00688-8","DOIUrl":"https://doi.org/10.1557/s43577-024-00688-8","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The tetrahedron, as the simplest platonic shape, is a profound building block with the potential to create intricate superstructures. Noteworthy designs utilizing tetrahedral building blocks include the Sierpiński tetrahedron (the most fundamental three-dimensional fractal), a one-dimensional helical structure known as the tetrahelix, and various crystalline and quasicrystalline packings. Historically, the practicality of tetrahedral superstructures has been evident, providing stable, well-defined frameworks for various constructions, including truss bridges, tower cranes, and electricity transmission line pylons. In the field of self-assembled nanocrystal superlattices, tetrahedral nanocrystals, as building blocks, occupy a unique place among all the possible nanoscale particles. Mathematical models, simulation work, and experimental studies using nanocrystals in the laboratory have suggested that self-assembled structures derived from nanoscale tetrahedral building blocks are notably intricate, giving rise to new horizons of high-entropy nanocrystal superlattices. An important implication from previous works is that such tetrahedral nanocrystal superlattices form through highly delicate interparticle interactions, emphasizing the importance of the fine features of these nanocrystals. In this article, we summarize the advances in superlattices assembled from tetrahedral nanocrystals. We first define the tetrahedron and tetrahedron analogues based on Conway’s transformation and graph theory, underscoring their relevance to the crystallization process producing tetrahedral nanocrystals. Then, we showcase previous reports on the synthesis of tetrahedral nanocrystals and the resulting nanocrystal superstructures. Finally, we conclude by offering insights and perspective into the chemical and architectural intricacy that could emerge from tetrahedral nanocrystals.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"22 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mrs BulletinPub Date : 2024-03-19DOI: 10.1557/s43577-024-00675-z
Mabel Rodríguez-Fernández, Saray Gragera, José Carlos Piñero, Rodrigo Alcántara, Javier Navas
{"title":"Photoluminescent Bi-doped CsPbX3 (X: Br, I) perovskite quantum dots for optoelectronic devices","authors":"Mabel Rodríguez-Fernández, Saray Gragera, José Carlos Piñero, Rodrigo Alcántara, Javier Navas","doi":"10.1557/s43577-024-00675-z","DOIUrl":"https://doi.org/10.1557/s43577-024-00675-z","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Perovskite quantum dots (PQDs) became a hot spot in recent years due to their amazing properties, such as the high photoluminescence quantum yield, tunable emission, and narrow bandwidth being important for their application in different optoelectronic devices. In this work, Bi-doped CsPbBr<sub>3</sub> and Bi-doped CsPbI<sub>3</sub> PQDs were synthesized through the hot-injection method and compared with pristine CsPbBr<sub>3</sub> and CsPbI<sub>3</sub> to analyze the effect of Bi and the halogen on their properties. In addition, all the samples were synthesized at 130°C, 150°C, and 170°C with the aim of analyzing the effect of the temperature. The results showed a wide range of the emission wavelength from around 500 nm (Bi-doped CsPbBr<sub>3</sub>) to 630 nm (Bi-doped CsPbI<sub>3</sub>) as a consequence of the effect of the halogen in “X” position and a slight blueshift in the main photoluminescence emission band after doping the pristine quantum dots with Bi.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><h3 data-test=\"abstract-sub-heading\">Impact statement</h3><p>We believe that the work in this article represents an important advance in the application of perovskite quantum dots in optoelectronics applications, such as in LEDs or lasers. We report here the synthesis and characterization of Bi-doped CsPbX<sub>3</sub> perovskite quantum dots (PQDs), being X: Br and I. These Bi-doped PQDs show a wide range of the emission wavelength from around 500 nm (Bi-doped CsPbBr<sub>3</sub>) to 630 nm (Bi-doped CsPbI<sub>3</sub>) as a consequence of the effect of the halogen in “X” position and a slight blueshift in the main photoluminescence emission band after doping the pristine quantum dots with Bi. Therefore, they are good candidates to fabricate optoelectronic devices such as LEDs and lasers thanks to their high photoluminescence emission and their tunable emission.</p>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"46 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mrs BulletinPub Date : 2024-03-15DOI: 10.1557/s43577-024-00687-9
{"title":"Patchy nanoparticles with surface complexity for directed self-assembly","authors":"","doi":"10.1557/s43577-024-00687-9","DOIUrl":"https://doi.org/10.1557/s43577-024-00687-9","url":null,"abstract":"<h3>Abstract</h3> <p>Patchy nanoparticles (PNPs) possess anisotropic surfaces that produce emergent directionalities in interactions. Manipulation of such surface complexities offers a powerful handle for control over interparticle spatial and orientational orderings, making PNPs an ideal class of nanoscale synthons for self-assembly. However, realization of PNPs with defined patch positions and geometries faces technical challenges related to the level of precision chemistry required to achieve the desired surface patterning. Here, we provide an in-depth review of state-of-the-art strategies available for PNP synthesis. We examine the experimental efforts made to synthesize PNPs, classifying advances based on different material types spanning organic and inorganic systems. We conclude by presenting barriers in PNP synthesis and highlighting ongoing theoretical efforts aimed at guiding experimental design and parameter selection for creating novel surface patterning on NPs.</p> <span> <h3>Graphical abstract</h3> <p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/43577_2024_687_Figb_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"24 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mrs BulletinPub Date : 2024-03-13DOI: 10.1557/s43577-024-00673-1
{"title":"Chiral assembly of nanoparticles in functional inorganic materials","authors":"","doi":"10.1557/s43577-024-00673-1","DOIUrl":"https://doi.org/10.1557/s43577-024-00673-1","url":null,"abstract":"<h3>Abstract</h3> <p>Chirality is prevalent in nature, offering unique inspirations for building functional inorganic materials. Within these intricate chiral materials, the assembly of nanoparticles as fundamental building blocks is supposed to contribute to the formation of chiral suprastructures. Herein, by a comprehensive review of various reported chiral materials recently, we systematically document the strategies for precise control of chiral materials synthesis via inorganic nanoparticle assembly, including additive-induced, template-directed, and physical field-mediated approaches. Additionally, we demonstrate the key applications of chiral assembly inorganic materials. In summary, this work likewise advances our understanding the roles of nanoparticle assembly in chiral suprastructures, which could provide important design insights into the fabrication of functional materials in structural applications.</p> <span> <h3>Graphical abstract</h3> <p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/43577_2024_673_Fige_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"45 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mrs BulletinPub Date : 2024-03-12DOI: 10.1557/s43577-024-00677-x
Andrew S. Westover
{"title":"Understanding the complexities of Li metal for solid-state Li-metal batteries","authors":"Andrew S. Westover","doi":"10.1557/s43577-024-00677-x","DOIUrl":"https://doi.org/10.1557/s43577-024-00677-x","url":null,"abstract":"<p>Li-metal anodes are a key enabling technology for next-generation high-energy batteries, including Li–S, Li-air, and high-voltage cathodes. While most research enabling Li metal focuses on electrolyte design, especially in the solid state, the nature of the Li metal itself has a significant impact on the performance of both solid- and liquid-based batteries. This has historically been understudied, but recent work has highlighted the importance of tailoring the Li metal to optimize high-performance batteries. This article focuses on the key aspects of Li metal that impact performance, including the method of synthesis, microstructure, surfaces, impurities, mechanics, and alloying strategies to optimize Li anode performance. The article will also briefly look at the impact of long-term cycling on the evolution of Li-metal anodes in solid-state batteries and highlight key areas of needed research.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"300 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140125974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}