Chemical and architectural intricacy from nanoscale tetrahedra and their analogues

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jeremy Schneider, Yasutaka Nagaoka, Hongyou Fan, Ou Chen
{"title":"Chemical and architectural intricacy from nanoscale tetrahedra and their analogues","authors":"Jeremy Schneider, Yasutaka Nagaoka, Hongyou Fan, Ou Chen","doi":"10.1557/s43577-024-00688-8","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The tetrahedron, as the simplest platonic shape, is a profound building block with the potential to create intricate superstructures. Noteworthy designs utilizing tetrahedral building blocks include the Sierpiński tetrahedron (the most fundamental three-dimensional fractal), a one-dimensional helical structure known as the tetrahelix, and various crystalline and quasicrystalline packings. Historically, the practicality of tetrahedral superstructures has been evident, providing stable, well-defined frameworks for various constructions, including truss bridges, tower cranes, and electricity transmission line pylons. In the field of self-assembled nanocrystal superlattices, tetrahedral nanocrystals, as building blocks, occupy a unique place among all the possible nanoscale particles. Mathematical models, simulation work, and experimental studies using nanocrystals in the laboratory have suggested that self-assembled structures derived from nanoscale tetrahedral building blocks are notably intricate, giving rise to new horizons of high-entropy nanocrystal superlattices. An important implication from previous works is that such tetrahedral nanocrystal superlattices form through highly delicate interparticle interactions, emphasizing the importance of the fine features of these nanocrystals. In this article, we summarize the advances in superlattices assembled from tetrahedral nanocrystals. We first define the tetrahedron and tetrahedron analogues based on Conway’s transformation and graph theory, underscoring their relevance to the crystallization process producing tetrahedral nanocrystals. Then, we showcase previous reports on the synthesis of tetrahedral nanocrystals and the resulting nanocrystal superstructures. Finally, we conclude by offering insights and perspective into the chemical and architectural intricacy that could emerge from tetrahedral nanocrystals.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"22 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-024-00688-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The tetrahedron, as the simplest platonic shape, is a profound building block with the potential to create intricate superstructures. Noteworthy designs utilizing tetrahedral building blocks include the Sierpiński tetrahedron (the most fundamental three-dimensional fractal), a one-dimensional helical structure known as the tetrahelix, and various crystalline and quasicrystalline packings. Historically, the practicality of tetrahedral superstructures has been evident, providing stable, well-defined frameworks for various constructions, including truss bridges, tower cranes, and electricity transmission line pylons. In the field of self-assembled nanocrystal superlattices, tetrahedral nanocrystals, as building blocks, occupy a unique place among all the possible nanoscale particles. Mathematical models, simulation work, and experimental studies using nanocrystals in the laboratory have suggested that self-assembled structures derived from nanoscale tetrahedral building blocks are notably intricate, giving rise to new horizons of high-entropy nanocrystal superlattices. An important implication from previous works is that such tetrahedral nanocrystal superlattices form through highly delicate interparticle interactions, emphasizing the importance of the fine features of these nanocrystals. In this article, we summarize the advances in superlattices assembled from tetrahedral nanocrystals. We first define the tetrahedron and tetrahedron analogues based on Conway’s transformation and graph theory, underscoring their relevance to the crystallization process producing tetrahedral nanocrystals. Then, we showcase previous reports on the synthesis of tetrahedral nanocrystals and the resulting nanocrystal superstructures. Finally, we conclude by offering insights and perspective into the chemical and architectural intricacy that could emerge from tetrahedral nanocrystals.

Graphical abstract

Abstract Image

来自纳米级四面体及其类似物的化学和建筑复杂性
摘要四面体作为最简单的柏拉图形状,是一种深奥的构件,具有创造错综复杂的超结构的潜力。利用四面体构件的著名设计包括西尔潘斯基四面体(最基本的三维分形)、被称为四螺旋的一维螺旋结构以及各种晶体和准晶体组合。从历史上看,四面体超结构的实用性是显而易见的,它为各种建筑提供了稳定、定义明确的框架,包括桁架桥、塔式起重机和输电线铁塔。在自组装纳米晶体超晶格领域,四面体纳米晶体作为构件,在所有可能的纳米级粒子中占有独特的地位。数学模型、模拟工作以及在实验室中使用纳米晶体进行的实验研究表明,由纳米级四面体构件衍生的自组装结构错综复杂,开创了高熵纳米晶体超晶格的新局面。以往研究的一个重要意义在于,这种四面体纳米晶体超晶格是通过高度微妙的粒子间相互作用形成的,从而强调了这些纳米晶体精细特征的重要性。在本文中,我们总结了由四面体纳米晶体组装而成的超晶格的研究进展。我们首先根据康威变换和图论定义了四面体和四面体类似物,强调了它们与产生四面体纳米晶体的结晶过程的相关性。然后,我们展示了以往有关合成四面体纳米晶体和由此产生的纳米晶体超结构的报道。最后,我们对四面体纳米晶体可能产生的复杂化学和结构提出了见解和看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mrs Bulletin
Mrs Bulletin 工程技术-材料科学:综合
CiteScore
7.40
自引率
2.00%
发文量
193
审稿时长
4-8 weeks
期刊介绍: MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信