Driving forces for particle-based crystallization: From experiments to theory and simulations

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Maria L. Sushko
{"title":"Driving forces for particle-based crystallization: From experiments to theory and simulations","authors":"Maria L. Sushko","doi":"10.1557/s43577-024-00696-8","DOIUrl":null,"url":null,"abstract":"<p>The multistep crystallization processes involving the formation of stable building blocks that subsequently assemble into a crystal are ubiquitous in mineral formation and biomineralization and are particularly attractive in materials synthesis. Utilizing these pathways offers the approach to overcoming the restrictions on the expression of various crystal faces imposed by the interfacial energy during monomer-by-monomer growth to unlock the breadth of architectures with unique properties. Controlling particle-based crystallization proved challenging despite its promise due to the complex interdependence of interfacial forces and their nonlinear dependence on synthesis parameters. Here, the status of the development of state-of-the-art approaches to measuring interparticle forces and predictive theoretical models of particle-based crystallization are reviewed.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-024-00696-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The multistep crystallization processes involving the formation of stable building blocks that subsequently assemble into a crystal are ubiquitous in mineral formation and biomineralization and are particularly attractive in materials synthesis. Utilizing these pathways offers the approach to overcoming the restrictions on the expression of various crystal faces imposed by the interfacial energy during monomer-by-monomer growth to unlock the breadth of architectures with unique properties. Controlling particle-based crystallization proved challenging despite its promise due to the complex interdependence of interfacial forces and their nonlinear dependence on synthesis parameters. Here, the status of the development of state-of-the-art approaches to measuring interparticle forces and predictive theoretical models of particle-based crystallization are reviewed.

Graphical abstract

Abstract Image

粒子结晶的驱动力:从实验到理论和模拟
在矿物形成和生物矿化过程中,涉及形成稳定构件并随后组装成晶体的多步结晶过程无处不在,在材料合成中尤其具有吸引力。利用这些途径可以克服单体生长过程中界面能对各种晶面表达的限制,从而获得具有独特性质的广泛结构。由于界面力之间复杂的相互依存关系及其与合成参数之间的非线性依赖关系,尽管基于颗粒的结晶技术前景广阔,但控制这种结晶技术仍具有挑战性。本文回顾了测量粒子间作用力的最先进方法和粒子结晶预测理论模型的发展状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mrs Bulletin
Mrs Bulletin 工程技术-材料科学:综合
CiteScore
7.40
自引率
2.00%
发文量
193
审稿时长
4-8 weeks
期刊介绍: MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信