Molecular Genetics and Genomics最新文献

筛选
英文 中文
A rapid, inexpensive and effective method for the efficient isolation of genomic DNA from Gram-negative bacteria. 从革兰氏阴性细菌中高效分离基因组 DNA 的快速、廉价而有效的方法。
IF 3.1 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-03-07 DOI: 10.1007/s00438-024-02120-x
Lihini Ranesha Weerakkody, Chamindri Witharana
{"title":"A rapid, inexpensive and effective method for the efficient isolation of genomic DNA from Gram-negative bacteria.","authors":"Lihini Ranesha Weerakkody, Chamindri Witharana","doi":"10.1007/s00438-024-02120-x","DOIUrl":"10.1007/s00438-024-02120-x","url":null,"abstract":"<p><p>Currently, there are several protocols to extract bacterial DNA based on different principles. However, the quantity and the quality of the DNA obtained by each method are highly variable and microorganism dependent. In most of these classical crude methods, highly toxic and hazardous organic solvents such as phenol and chloroform are used for deproteinization, whereas in certain protocols, expensive enzymes including RNases and Proteinases are used. This study was designed to introduce a simple, rapid, inexpensive and effective genomic DNA isolation procedure for Gram-negative bacteria, without the usage of toxic chemicals and costly enzymes. This novel method was compared with another classical method known as the salting-out method, which uses proteinase-K. Concentration and yield of the extracted DNA were determined by gel electrophoresis by comparing the gel band intensity of the sample DNA to that of a DNA quantitation standard and by the Quantus™ fluorometer. According to the results, the yield of extracted DNA was higher in the novel method compared to the salting-out method. Moreover, the entire process was accomplished in less than 2 h with the novel method. Purity and integrity of extracted genomic DNA by both methods were similar. In addition, the quality of DNA was determined using Multicopy Associated Filamentation (MAF) gene amplification by polymerase chain reaction (PCR). Thus, the described technique is non-toxic, less time and fund consuming, efficient and a well-suited method for routine DNA isolation from Gram negative bacteria.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomics-based analysis of four porcine-derived lactic acid bacteria strains and their evaluation as potential probiotics. 基于基因组学的四种猪源性乳酸菌株分析及其作为潜在益生菌的评估。
IF 3.1 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-03-05 DOI: 10.1007/s00438-024-02101-0
Dekai Niu, Ni Feng, Siteng Xi, Jianjian Xu, Yong Su
{"title":"Genomics-based analysis of four porcine-derived lactic acid bacteria strains and their evaluation as potential probiotics.","authors":"Dekai Niu, Ni Feng, Siteng Xi, Jianjian Xu, Yong Su","doi":"10.1007/s00438-024-02101-0","DOIUrl":"10.1007/s00438-024-02101-0","url":null,"abstract":"<p><p>The search for probiotics and exploration of their functions are crucial for livestock farming. Recently, porcine-derived lactic acid bacteria (LAB) have shown great potential as probiotics. However, research on the evaluation of porcine-derived LAB as potential probiotics through genomics-based analysis is relatively limited. The present study analyzed four porcine-derived LAB strains (Lactobacillus johnsonii L16, Latilactobacillus curvatus ZHA1, Ligilactobacillus salivarius ZSA5 and Ligilactobacillus animalis ZSB1) using genomic techniques and combined with in vitro tests to evaluate their potential as probiotics. The genome sizes of the four strains ranged from 1,897,301 bp to 2,318,470 bp with the GC contents from 33.03 to 41.97%. Pan-genomic analysis and collinearity analysis indicated differences among the genomes of four strains. Carbohydrate active enzymes analysis revealed that L. johnsonii L16 encoded more carbohydrate active enzymes than other strains. KEGG pathway analysis and in vitro tests confirmed that L. johnsonii L16 could utilize a wide range of carbohydrates and had good utilization capacity for each carbohydrate. The four strains had genes related to acid tolerance and were tolerant to low pH, with L. johnsonii L16 showing the greatest tolerance. The four strains contained genes related to bile salt tolerance and were able to tolerate 0.1% bile salt. Four strains had antioxidant related genes and exhibited antioxidant activity in in vitro tests. They contained the genes linked with organic acid biosynthesis and exhibited antibacterial activity against enterotoxigenic Escherichia coli K88 (ETEC K88) and Salmonella 6,7:c:1,5, wherein, L. johnsonii L16 and L. salivarius ZSA5 had gene clusters encoding bacteriocin. Results suggest that genome analysis combined with in vitro tests is an effective approach for evaluating different strains as probiotics. The findings of this study indicate that L. johnsonii L16 has the potential as a probiotic strain among the four strains and provide theoretical basis for the development of probiotics in swine production.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction of a diverse genetic background of Pyrus into Malus through intergeneric hybridization. 通过属间杂交,将不同基因背景的刺桐引入马卢斯。
IF 3.1 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-03-02 DOI: 10.1007/s00438-024-02131-8
Takuya Morimoto, Ryuya Narazaki, Hiroaki Okabe, Lumin Zhang, Kazusa Nishimura, Akihiro Itai
{"title":"Introduction of a diverse genetic background of Pyrus into Malus through intergeneric hybridization.","authors":"Takuya Morimoto, Ryuya Narazaki, Hiroaki Okabe, Lumin Zhang, Kazusa Nishimura, Akihiro Itai","doi":"10.1007/s00438-024-02131-8","DOIUrl":"10.1007/s00438-024-02131-8","url":null,"abstract":"<p><p>Wide hybridizations across species and genera have been employed to enhance agriculturally important traits in crops. Within the tribe Maleae of the Rosaceae family, different genera and species exhibit several traits useful for increasing diversity and gene pool through hybridization. This study aimed to develop and characterize intergeneric hybrid individuals between Malus and Pyrus. Through seed germination, shoot multiplication, and rooting in vitro, acclimatized seedlings showing vegetative growth on their own roots were obtained from crosses of Malus × domestica pollinated by Pyrus communis, P. bretschneideri, and the Pyrus interspecific hybrid (P. communis × P. pyrifolia). Comparative analysis of leaf morphology, flow cytometry, and molecular genotyping confirmed the hybrid status of the individuals. Genome-wide genotyping revealed that all the hybrid individuals inherited genomic fragments symmetrically from the Malus and Pyrus parents. To the best of our knowledge, this is the first report on the development of intergeneric hybrid seedlings between Malus × domestica and P. bretschneideri. Furthermore, the Pyrus interspecific hybrid individual served as a bridge plant for introducing the genetic background of P. pyrifolia into Malus × domestica. The results of this study provided a crucial foundation for breeding through intergeneric hybridization between Malus and Pyrus, facilitating the incorporation of valuable traits from diverse gene pools.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140013010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C and G are frequently mutated into T and A in coding regions of human genes 在人类基因的编码区,C 和 G 经常变异为 T 和 A
IF 3.1 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-03-02 DOI: 10.1007/s00438-024-02118-5
Yong Wang, Ke-Ping Chen
{"title":"C and G are frequently mutated into T and A in coding regions of human genes","authors":"Yong Wang, Ke-Ping Chen","doi":"10.1007/s00438-024-02118-5","DOIUrl":"https://doi.org/10.1007/s00438-024-02118-5","url":null,"abstract":"<p>Nucleotide mutations in human genes have long been a hot subject for study because some of them may lead to severe human diseases. Understanding the general mutational process and evolutionary trend of human genes could help answer such questions as why certain diseases occur and what challenges we face in protecting human health. In this study, we conducted statistics on 89,895 single-nucleotide variations identified in coding regions of 18,339 human genes. The results show that C and G are frequently mutated into T and A in human genes. C/G (C or G)-to-T/A mutations lead to reduction of hydrogen bonds in double-stranded DNA because C–G and T–A base pairs are maintained by three and two hydrogen bonds respectively. C-to-T and G-to-A mutations occur predominantly in human genes because they not only reduce hydrogen bonds but also belong to transition mutation. Reduction of hydrogen bonds could reduce energy consumption not only in separating double strands of mutated DNA for transcription and replication but also in disrupting stem-loop structure of mutated mRNA for translation. It is thus considered that to reduce hydrogen bonds (and thus to reduce energy consumption in gene expression) is one of the driving forces for nucleotide mutation. Moreover, codon mutation is positively correlated to its content, suggesting that most mutations are not targeted on changing any specific codons (amino acids) but are merely for reducing hydrogen bonds. Our study provides an example of utilizing single-nucleotide variation data to infer evolutionary trend of human genes, which can be referenced to conduct similar studies in other organisms.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140018772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide association study of drought tolerance in wheat (Triticum aestivum L.) identifies SNP markers and candidate genes. 小麦(Triticum aestivum L.)耐旱性的全基因组关联研究确定了 SNP 标记和候选基因。
IF 3.1 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-03-02 DOI: 10.1007/s00438-024-02104-x
Sina Nouraei, Md Sultan Mia, Hui Liu, Neil C Turner, Guijun Yan
{"title":"Genome-wide association study of drought tolerance in wheat (Triticum aestivum L.) identifies SNP markers and candidate genes.","authors":"Sina Nouraei, Md Sultan Mia, Hui Liu, Neil C Turner, Guijun Yan","doi":"10.1007/s00438-024-02104-x","DOIUrl":"10.1007/s00438-024-02104-x","url":null,"abstract":"<p><p>Drought stress poses a severe threat to global wheat production, necessitating an in-depth exploration of the genetic basis for drought tolerance associated traits. This study employed a 90 K SNP array to conduct a genome-wide association analysis, unravelling genetic determinants of key traits related to drought tolerance in wheat, namely plant height, root length, and root and shoot dry weight. Using the mixed linear model (MLM) method on 125 wheat accessions subjected to both well-watered and drought stress treatments, we identified 53 SNPs significantly associated with stress susceptibility (SSI) and tolerance indices (STI) for the targeted traits. Notably, chromosomes 2A and 3B stood out with ten and nine associated markers, respectively. Across 17 chromosomes, 44 unique candidate genes were pinpointed, predominantly located on the distal ends of 1A, 1B, 1D, 2A, 3A, 3B, 4A, 6A, 6B, 7A, 7B, and 7D chromosomes. These genes, implicated in diverse functions related to plant growth, development, and stress responses, offer a rich resource for future investigation. A clustering pattern emerged, notably with seven genes associated with SSI for plant height and four genes linked to both STI of plant height and shoot dry weight, converging on specific regions of chromosome arms of 2AS and 3BL. Additionally, shared genes encoding polygalacturonase, auxilin-related protein 1, peptide deformylase, and receptor-like kinase underscored the interconnectedness between plant height and shoot dry weight. In conclusion, our findings provide insights into the molecular mechanisms governing wheat drought tolerance, identifying promising genomic loci for further exploration and crop improvement strategies.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140013009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of plb1 mutation that extends longevity via activating Sty1 MAPK in Schizosaccharomyces pombe. 鉴定可通过激活 Sty1 MAPK 延长鼠李酵母寿命的 plb1 突变。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-02-29 DOI: 10.1007/s00438-024-02107-8
Yasukichi Maekawa, Kotaro Matsui, Keisuke Okamoto, Takafumi Shimasaki, Hokuto Ohtsuka, Motohiro Tani, Kunio Ihara, Hirofumi Aiba
{"title":"Identification of plb1 mutation that extends longevity via activating Sty1 MAPK in Schizosaccharomyces pombe.","authors":"Yasukichi Maekawa, Kotaro Matsui, Keisuke Okamoto, Takafumi Shimasaki, Hokuto Ohtsuka, Motohiro Tani, Kunio Ihara, Hirofumi Aiba","doi":"10.1007/s00438-024-02107-8","DOIUrl":"10.1007/s00438-024-02107-8","url":null,"abstract":"<p><p>To understand the lifespan of higher organisms, including humans, it is important to understand lifespan at the cellular level as a prerequisite. So, fission yeast is a good model organism for the study of lifespan. To identify the novel factors involved in longevity, we are conducting a large-scale screening of long-lived mutant strains that extend chronological lifespan (cell survival in the stationary phase) using fission yeast. One of the newly acquired long-lived mutant strains (No.98 mutant) was selected for analysis and found that the long-lived phenotype was due to a missense mutation (92Phe → Ile) in the plb1<sup>+</sup> gene. plb1<sup>+</sup> gene in fission yeast is a nonessential gene encoding a homolog of phospholipase B, but its functions under normal growth conditions, as well as phospholipase B activity, remain unresolved. Our analysis of the No.98 mutant revealed that the plb1 mutation reduces the integrity of the cellular membrane and cell wall and activates Sty1 via phosphorylation.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139996833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The GaKAN2, a KANADI transcription factor, modulates stem trichomes in Gossypium arboreum. KANADI转录因子GaKAN2调节旱生麻的茎毛。
IF 3.1 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-02-28 DOI: 10.1007/s00438-024-02098-6
Xujiao Ren, Luying Yang, Yasir Muhammad, Yuxing Xie, Xinyi Lin, Li Yu, Yuefen Cao, Mingquan Ding, Yurong Jiang, Junkang Rong
{"title":"The GaKAN2, a KANADI transcription factor, modulates stem trichomes in Gossypium arboreum.","authors":"Xujiao Ren, Luying Yang, Yasir Muhammad, Yuxing Xie, Xinyi Lin, Li Yu, Yuefen Cao, Mingquan Ding, Yurong Jiang, Junkang Rong","doi":"10.1007/s00438-024-02098-6","DOIUrl":"10.1007/s00438-024-02098-6","url":null,"abstract":"<p><strong>Key message: </strong>GaKAN2, a member of the KANADI family, was found to be widely expressed in the cotton tissues and regulates trichome development through complex pathways. Cotton trichomes are believed to be the defense barrier against insect pests. Cotton fiber and trichomes are single-cell epidermal extensions with shared regulatory mechanisms. Despite several studies underlying mechanism of trichome development remains elusive. The KANADI is one of the key transcription factors (TFs) family, regulating Arabidopsis trichomes growth. However, the function of KANADI genes in cotton remains unknown. In the current study genome-wide scanning, transcriptomic analysis, gene silencing, subcellular localization, and yeast two-hybrid techniques were employed to decipher the function of KANADI TFs family genes in cotton crop. A total of 7 GaKAN genes were found in the Gossypium arboreum. Transcriptomic data revealed that these genes were significantly expressed in stem and root. Moreover, GaKAN2 was widely expressed in other tissues also. Subsequently, we selected GaKAN2 to validate the function of KANADI genes. Silencing of GaKAN2 resulted in a 24.99% decrease in single-cell trichomes and an 11.33% reduction in internodal distance, indicating its potential role in regulating trichomes and plant growth. RNA-Seq analysis elucidated that GaSuS and GaERS were the downstream genes of GaKAN2. The transcriptional activation and similarity in silencing phenotype between GaKAN2 and GaERS suggested that GaKAN2 regulates trichomes development through GaERS. Moreover, KEGG analysis revealed that a significant number of genes were enriched in the biosynthesis of secondary metabolites and plant hormone signal transduction pathways, thereby suggesting that GaKAN2 regulates the stem trichomes and plant growth. The GFP subcellular localization and yeast transcriptional activation analysis elucidated that GaKAN2 was located in the nucleus and capable of regulating the transcription of downstream genes. This study elucidated the function and characteristics of the KANADI gene family in cotton, providing a fundamental basis for further research on GaKAN2 gene in cotton plant trichomes and plant developmental processes.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139983250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel MEI1 mutations cause chromosomal and DNA methylation abnormalities leading to embryonic arrest and implantation failure. 新型 MEI1 基因突变会导致染色体和 DNA 甲基化异常,从而导致胚胎停育和植入失败。
IF 3.1 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-02-28 DOI: 10.1007/s00438-024-02113-w
Xiangli Wu, Yuqing Tian, Yiqi Yu, Xujun He, Xiaohua Tang, Shishi Li, Jing Shu, Xiaoyan Guo
{"title":"Novel MEI1 mutations cause chromosomal and DNA methylation abnormalities leading to embryonic arrest and implantation failure.","authors":"Xiangli Wu, Yuqing Tian, Yiqi Yu, Xujun He, Xiaohua Tang, Shishi Li, Jing Shu, Xiaoyan Guo","doi":"10.1007/s00438-024-02113-w","DOIUrl":"10.1007/s00438-024-02113-w","url":null,"abstract":"<p><p>This study presents a case of a female infertile patient suffering from embryonic arrest and recurrent implantation failure. The primary objective was to assess the copy number variations (CNVs) and DNA methylation of her embryos. Genetic diagnosis was conducted by whole-exome sequencing and validated through Sanger sequencing. CNV evaluation of two cleavage stage embryos was performed using whole-genome sequencing, while DNA methylation and CNV assessment of two blastocysts were carried out using whole-genome bisulfite sequencing. We identified two novel pathogenic frameshift variants in the MEI1 gene (NM_152513.3, c.3002delC, c.2264_2268 + 11delGTGAGGTATGGACCAC) in the proband. These two variants were inherited from her heterozygous parents, consistent with autosomal recessive genetic transmission. Notably, two Day 3 embryos and two Day 6 blastocysts were all aneuploid, with numerous monosomy and trisomy events. Moreover, global methylation levels greatly deviated from the optimized window of 0.25-0.27, measuring 0.344 and 0.168 for the respective blastocysts. This study expands the mutational spectrum of MEI1 and is the first to document both aneuploidy and abnormal methylation levels in embryos from a MEI1-affected female patient presenting with embryonic arrest. Given that females affected by MEI1 mutations might experience either embryonic arrest or monospermic androgenetic hydatidiform moles due to the extrusion of all maternal chromosomes, the genetic makeup of the arrested embryos of MEI1 patients provides important clues for understanding the different disease mechanisms of the two phenotypes.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139983249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of barley (Horduem vulgare) lys3 mutants identifies genes under the regulation of the prolamin-box binding transcription factor and elucidates its role in endosperm promoter methylation during grain development. 大麦(Horduem vulgare)lys3突变体的特征识别了受prolamin-box结合转录因子调控的基因,并阐明了它在谷物发育过程中胚乳启动子甲基化中的作用。
IF 3.1 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-02-28 DOI: 10.1007/s00438-024-02112-x
Marcus A Vinje, Carl H Simmons
{"title":"Characterization of barley (Horduem vulgare) lys3 mutants identifies genes under the regulation of the prolamin-box binding transcription factor and elucidates its role in endosperm promoter methylation during grain development.","authors":"Marcus A Vinje, Carl H Simmons","doi":"10.1007/s00438-024-02112-x","DOIUrl":"10.1007/s00438-024-02112-x","url":null,"abstract":"<p><p>Barley ranks fourth in global cereal production and is primarily grown for animal feed and malt. Hordeins, the principal barley seed storage proteins, are homologous to wheat gluten and when ingested elicit an immune response in people with Coeliac disease. Risø 1508 is a chemically induced barley mutant with low hordein levels imparted by the lys3.a locus that is reported to be caused by an SNP in the barley prolamin-box binding factor gene (BPBF). Reports suggest the lys3.a locus prevents CG DNA demethylation at the Hor2 (B-hordein) promoter during grain development subsequently causing hypermethylation and inhibiting gene expression. In lys3.a mutants, endosperm-specific β-amylase (Bmy1) and Hor2 are similarly downregulated during grain development and thus we hypothesize that the inability to demethylate the Bmy1 promoter CG islands is also causing Bmy1 downregulation. We use whole-genome bisulfite sequencing and mRNA-seq on developing endosperms from two lys3.a mutants and a lys3.b mutant to determine all downstream genes affected by lys3 mutations. RNAseq analysis identified 306 differentially expressed genes (DEGs) shared between all mutants and their parents and 185 DEGs shared between both lys3.a mutants and their parents. Global DNA methylation levels and promoter CG DNA methylation levels were not significantly different between the mutants and their parents and thus refute the hypothesis that the lys3.a mutant's phenotype is caused by dysregulation of demethylation during grain development. The majority of DEGs were downregulated (e.g., B- and C-hordeins and Bmy1), but some DEGs were upregulated (e.g., β-glucosidase, D-hordein) suggesting compensatory effects and potentially explaining the low β-glucan phenotype observed in lys3.a germplasm. These findings have implications on human health and provide novel insight to barley breeders regarding the use of BPBF transcription factor mutants to create gluten-free barley varieties.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139983290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
De novo assembly of the complete mitochondrial genome of Mycetophylax simplex Emery, 1888 through organelle targeting revels no substantial expansion of gene spacers, but rather some slightly shorter genes. 通过细胞器靶向技术,重新组装了简单真菌(Mycetophylax simplex Emery, 1888)的完整线粒体基因组,结果发现基因间隔并没有大幅扩展,反而出现了一些稍短的基因。
IF 3.1 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-02-27 DOI: 10.1007/s00438-024-02099-5
Danon Clemes Cardoso, Brenda Carla Lima Baldez, Adriana Heloísa Pereira, Evanguedes Kalapothakis, Izinara Cruz Rosse, Maykon Passos Cristiano
{"title":"De novo assembly of the complete mitochondrial genome of Mycetophylax simplex Emery, 1888 through organelle targeting revels no substantial expansion of gene spacers, but rather some slightly shorter genes.","authors":"Danon Clemes Cardoso, Brenda Carla Lima Baldez, Adriana Heloísa Pereira, Evanguedes Kalapothakis, Izinara Cruz Rosse, Maykon Passos Cristiano","doi":"10.1007/s00438-024-02099-5","DOIUrl":"10.1007/s00438-024-02099-5","url":null,"abstract":"<p><p>Mitochondria play a key role in cell biology and have their own genome, residing in a highly oxidative environment that induces faster changes than the nuclear genome. Because of this, mitochondrial markers have been exploited to reconstruct phylogenetic and phylogeographic relationships in studies of adaptation and molecular evolution. In this study, we determined the complete mitogenome of the fungus-farming ant Mycetophylax simplex (Hymenoptera, Formicidae) and conducted a comparative analysis among 29 myrmicine ant mitogenomes. Mycetophylax simplex is an endemic ant that inhabits sand dunes along the southern Atlantic coast. Specifically, the species occur in the ecosystem known as \"restinga\", within the Atlantic Forest biome. Due to habitat degradation, land use and decline of restinga habitats, the species is considered locally extinct in extremely urban beaches and is listed as vulnerable on the Brazilian Red List (ICMBio). We employed a mitochondrion-targeting approach to obtain the complete mitogenome through high-throughput DNA sequencing technology. This method allowed us to determine the mitogenome with high performance, coverage and low cost. The circular mitogenome has a length of 16,367 base pairs enclosing 37 genes (13 protein-coding genes, 22 tRNAs and 2 rRNAs) along with one control region (CR). All the protein-coding genes begin with a typical ATN codon and end with the canonical stop codons. All tRNAs formed the fully paired acceptor stems and fold into the typical cloverleaf-shaped secondary structures. The gene order is consistent with the shared Myrmicinae structure, and the A + T content of the majority strand is 81.51%. Long intergenic spacers were not found but some gene are slightly shorter. The phylogenetic relationships based on concatenated nucleotide and amino acid sequences of the 13 protein-coding genes, using Maximum Likelihood and Bayesian Inference methods, indicated that mitogenome sequences were useful in resolving higher-level relationship within Formicidae.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信