Zaiying Xiang, Qiaoyuan Ye, Zihan Zhao, Naian Wang, Jinrong Li, Minghai Zou, Cia-Hin Lau, Haibao Zhu, Shu Wang, Yuanlin Ding
{"title":"开发用于在人类多能干细胞中敲除 beta-2 微球蛋白的杆状病毒 CRISPR/Cas9 载体系统。","authors":"Zaiying Xiang, Qiaoyuan Ye, Zihan Zhao, Naian Wang, Jinrong Li, Minghai Zou, Cia-Hin Lau, Haibao Zhu, Shu Wang, Yuanlin Ding","doi":"10.1007/s00438-024-02167-w","DOIUrl":null,"url":null,"abstract":"<p><p>Derivation of hypoimmunogenic human cells from genetically manipulated pluripotent stem cells holds great promise for future transplantation medicine and adoptive immunotherapy. Disruption of beta-2-microglobulin (B2M) in pluripotent stem cells followed by differentiation into specialized cell types is a promising approach to derive hypoimmunogenic cells. Given the attractive features of CRISPR/Cas9-based gene editing tool and baculoviral delivery system, baculovirus can deliver CRISPR/Cas9 components for site-specific gene editing of B2M. Herein, we report the development of a baculoviral CRISPR/Cas9 vector system for the B2M locus disruption in human cells. When tested in human embryonic stem cells (hESCs), the B2M gene knockdown/out was successfully achieved, leading to the stable down-regulation of human leukocyte antigen class I expression on the cell surface. Fibroblasts derived from the B2M gene-disrupted hESCs were then used as stimulator cells in the co-cultures with human peripheral blood mononuclear cells. These fibroblasts triggered significantly reduced alloimmune responses as assessed by sensitive Elispot assays. The B2M-negative hESCs maintained the pluripotency and the ability to differentiate into three germ lineages in vitro and in vivo. These findings demonstrated the feasibility of using the baculoviral-CRISPR/Cas9 system to establish B2M-disrupted pluripotent stem cells. B2M knockdown/out sufficiently leads to hypoimmunogenic conditions, thereby supporting the potential use of B2M-negative cells as universal donor cells for allogeneic cell therapy.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a baculoviral CRISPR/Cas9 vector system for beta-2-microglobulin knockout in human pluripotent stem cells.\",\"authors\":\"Zaiying Xiang, Qiaoyuan Ye, Zihan Zhao, Naian Wang, Jinrong Li, Minghai Zou, Cia-Hin Lau, Haibao Zhu, Shu Wang, Yuanlin Ding\",\"doi\":\"10.1007/s00438-024-02167-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Derivation of hypoimmunogenic human cells from genetically manipulated pluripotent stem cells holds great promise for future transplantation medicine and adoptive immunotherapy. Disruption of beta-2-microglobulin (B2M) in pluripotent stem cells followed by differentiation into specialized cell types is a promising approach to derive hypoimmunogenic cells. Given the attractive features of CRISPR/Cas9-based gene editing tool and baculoviral delivery system, baculovirus can deliver CRISPR/Cas9 components for site-specific gene editing of B2M. Herein, we report the development of a baculoviral CRISPR/Cas9 vector system for the B2M locus disruption in human cells. When tested in human embryonic stem cells (hESCs), the B2M gene knockdown/out was successfully achieved, leading to the stable down-regulation of human leukocyte antigen class I expression on the cell surface. Fibroblasts derived from the B2M gene-disrupted hESCs were then used as stimulator cells in the co-cultures with human peripheral blood mononuclear cells. These fibroblasts triggered significantly reduced alloimmune responses as assessed by sensitive Elispot assays. The B2M-negative hESCs maintained the pluripotency and the ability to differentiate into three germ lineages in vitro and in vivo. These findings demonstrated the feasibility of using the baculoviral-CRISPR/Cas9 system to establish B2M-disrupted pluripotent stem cells. B2M knockdown/out sufficiently leads to hypoimmunogenic conditions, thereby supporting the potential use of B2M-negative cells as universal donor cells for allogeneic cell therapy.</p>\",\"PeriodicalId\":18816,\"journal\":{\"name\":\"Molecular Genetics and Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00438-024-02167-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-024-02167-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Development of a baculoviral CRISPR/Cas9 vector system for beta-2-microglobulin knockout in human pluripotent stem cells.
Derivation of hypoimmunogenic human cells from genetically manipulated pluripotent stem cells holds great promise for future transplantation medicine and adoptive immunotherapy. Disruption of beta-2-microglobulin (B2M) in pluripotent stem cells followed by differentiation into specialized cell types is a promising approach to derive hypoimmunogenic cells. Given the attractive features of CRISPR/Cas9-based gene editing tool and baculoviral delivery system, baculovirus can deliver CRISPR/Cas9 components for site-specific gene editing of B2M. Herein, we report the development of a baculoviral CRISPR/Cas9 vector system for the B2M locus disruption in human cells. When tested in human embryonic stem cells (hESCs), the B2M gene knockdown/out was successfully achieved, leading to the stable down-regulation of human leukocyte antigen class I expression on the cell surface. Fibroblasts derived from the B2M gene-disrupted hESCs were then used as stimulator cells in the co-cultures with human peripheral blood mononuclear cells. These fibroblasts triggered significantly reduced alloimmune responses as assessed by sensitive Elispot assays. The B2M-negative hESCs maintained the pluripotency and the ability to differentiate into three germ lineages in vitro and in vivo. These findings demonstrated the feasibility of using the baculoviral-CRISPR/Cas9 system to establish B2M-disrupted pluripotent stem cells. B2M knockdown/out sufficiently leads to hypoimmunogenic conditions, thereby supporting the potential use of B2M-negative cells as universal donor cells for allogeneic cell therapy.
期刊介绍:
Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology.
The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.