Molecular Oral Microbiology最新文献

筛选
英文 中文
Exploring the genetic and functional diversity of Porphyromonas gingivalis long fimbriae. 探讨牙龈卟啉单胞菌长菌毛的遗传和功能多样性。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-10-01 Epub Date: 2023-09-26 DOI: 10.1111/omi.12433
Hendrik Leonhard Meyer, Mohamed M H Abdelbary, Eva Miriam Buhl, Christoph Kuppe, Georg Conrads
{"title":"Exploring the genetic and functional diversity of Porphyromonas gingivalis long fimbriae.","authors":"Hendrik Leonhard Meyer,&nbsp;Mohamed M H Abdelbary,&nbsp;Eva Miriam Buhl,&nbsp;Christoph Kuppe,&nbsp;Georg Conrads","doi":"10.1111/omi.12433","DOIUrl":"10.1111/omi.12433","url":null,"abstract":"<p><p>Porphyromonas gingivalis is a key pathobiont in periodontitis. Its long fimbriae consist of a single anchor (FimB), a varying number of stalk (FimA), and three accessory (tip-related) proteins (FimC, FimD, and FimE). Based on 133 strains/genomes available, it was our aim to investigate the diversity within FimA and FimB and explain the variety of long fimbriae (super-)structures. Combining the new forward primer fimAnewF with the established fimAunivR, we were able to amplify and sequence fimA including its leader region covering all genotypes and serotypes for phylogenetic analysis. We designed two primer pairs sensing the presence of an internal stop codon in fimB with an impact on fimbrial length. Finally, we examined fimbrial secondary structures by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The phylogeny of fimA/FimA revealed two new subtypes (IIa and IIb) with specific changes in functional domains and thus adding to the current classification scheme (I, Ib, and II-V). Regarding evolution, we confirm that Porphyromonas gulae fimA-type A is closely related to human P. gingivalis strains of cluster Ib and might be its ancestor genotype. A fimB internal stop codon is rare and was found in ATCC 33277 only. Comparing P. gingivalis TEM/SEM pictures of type I ATCC 33277 with type V OMI622 revealed a broad spectrum of fimbrial structures including bundling, cell-cell knotting, and brick-wall formation. In conclusion, FimA forms more distinct subtypes than previously known. The bundling of long fimbriae, a mechanism known from EPEC/EHEC and Salmonella, is proposed and supported by TEM/SEM pictures for the first time here. The role and variations of terminal accessory FimC-E in superstructure formation and/or (co-) adhesion should be investigated more closely next.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41127435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small noncoding RNA in Streptococci: From regulatory functions to drug development. 链球菌中的小非编码RNA:从调控功能到药物开发。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-08-01 DOI: 10.1111/omi.12411
Yang Yang, Liu Wang, Liu Liu, Jian Zou, Dingming Huang, Yuqing Li
{"title":"Small noncoding RNA in Streptococci: From regulatory functions to drug development.","authors":"Yang Yang,&nbsp;Liu Wang,&nbsp;Liu Liu,&nbsp;Jian Zou,&nbsp;Dingming Huang,&nbsp;Yuqing Li","doi":"10.1111/omi.12411","DOIUrl":"https://doi.org/10.1111/omi.12411","url":null,"abstract":"<p><p>Streptococci are a genus of gram-positive coccus of spherical bacteria, including many commensal bacteria and opportunistic pathogens that threaten the public health system. Small noncoding RNAs (sRNAs) are a class of noncoding RNAs regulating gene expression via various regulatory mechanisms, which have been illustrated to play vital roles in regulations of virulence factor expressions. Recent advances in sequencing technology and bioinformatic analysis facilitated discovery of a myriad of sRNAs from pathogenic bacteria, revealing a variety of unique features that contribute to gene expressions and virulence regulations. Although various research studies have reported the regulatory functions of sRNAs in the virulence of bacterial species of the genus Streptococci, the common features of sRNAs in the pathogenesis of Streptococci remain unclear. This blocks the development of novel antistreptococcal antibiotics and antibacterial strategies. Here, we summarize the fundamental roles of Streptococcal sRNAs in pathogenic regulations, which advance mechanistic understanding of streptococcal infection associated diseases. Moreover, we discuss the prospects of sRNA acting as drug targets to combat bacterial antibiotic resistance.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10165236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accessory fimbrial subunits and PPAD are necessary for TLR2 activation by Porphyromonas gingivalis. 副毛亚基和PPAD是牙龈卟啉单胞菌激活TLR2所必需的。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-08-01 DOI: 10.1111/omi.12427
Aleksandra Wielento, Grzegorz P Bereta, Katarzyna Szczęśniak, Anna Jacuła, Marina Terekhova, Maxim N Artyomov, Yoshiaki Hasegawa, Aleksander M Grabiec, Jan Potempa
{"title":"Accessory fimbrial subunits and PPAD are necessary for TLR2 activation by Porphyromonas gingivalis.","authors":"Aleksandra Wielento,&nbsp;Grzegorz P Bereta,&nbsp;Katarzyna Szczęśniak,&nbsp;Anna Jacuła,&nbsp;Marina Terekhova,&nbsp;Maxim N Artyomov,&nbsp;Yoshiaki Hasegawa,&nbsp;Aleksander M Grabiec,&nbsp;Jan Potempa","doi":"10.1111/omi.12427","DOIUrl":"https://doi.org/10.1111/omi.12427","url":null,"abstract":"<p><p>Porphyromonas gingivalis is an oral pathogen that promotes dysbiosis by quenching the bactericidal activity of the host immune system while maintaining chronic inflammation, leading to periodontitis. This involves the secretion of virulence factors such as P. gingivalis peptidyl arginine deiminase (PPAD), which converts the C-terminal Arg residues of bacterial and host-derived proteins and peptides into citrulline. We have previously shown that PPAD activity and major fimbriae (containing FimA) are necessary for P. gingivalis to activate Toll-like receptor 2 (TLR2). TLR2 is an important component of the innate immune system and plays a predominant role in the recognition of P. gingivalis by host cells. Here, we extend those findings to show that P. gingivalis strains deficient for PPAD and fimbriae induced almost identical transcriptional profiles in infected primary human gingival fibroblasts (PHGFs), but these differed substantially from the transcriptome elicited by the wild-type ATCC 33277 strain. Apparently, PPAD-modified fimbriae trigger the host cell response to P. gingivalis, as confirmed by showing that the proinflammatory host cell response mediated by TLR2 is dependent on PPAD activity and the presence of fimbriae, with type I fimbriae as the most potent TLR2 activators. We also found that PPAD-modified accessory fimbrial subunits (FimC, FimD, and FimE) alone or in combination are TLR2 ligands in a reporter cell line. Although FimA polymerization to form the fimbrial shaft was not required for TLR2 activation, the secretion and proteolytic maturation of FimA were necessary for signaling by accessory Fim proteins. This was supported by showing that the proinflammatory activation of PHGFs is dependent on PPAD and accessory fimbrial subunits. We conclude that accessory fimbrial subunits are modified by PPAD and stimulate the response to P. gingivalis infection in a TLR2-dependent manner.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9798558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A conditional gene expression system in Porphyromonas gingivalis for study of the secretion mechanisms of lipoproteins and T9SS cargo proteins. 研究牙龈卟啉单胞菌脂蛋白和T9SS载货蛋白分泌机制的条件基因表达系统。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-08-01 DOI: 10.1111/omi.12426
Yuko Sasaki, Mikio Shoji, Takayuki Sueyoshi, Satoshi Shibata, Takehiro Matsuo, Hideharu Yukitake, Matthias Wolf, Mariko Naito
{"title":"A conditional gene expression system in Porphyromonas gingivalis for study of the secretion mechanisms of lipoproteins and T9SS cargo proteins.","authors":"Yuko Sasaki,&nbsp;Mikio Shoji,&nbsp;Takayuki Sueyoshi,&nbsp;Satoshi Shibata,&nbsp;Takehiro Matsuo,&nbsp;Hideharu Yukitake,&nbsp;Matthias Wolf,&nbsp;Mariko Naito","doi":"10.1111/omi.12426","DOIUrl":"https://doi.org/10.1111/omi.12426","url":null,"abstract":"<p><p>The Gram-negative anaerobe, Porphyromonas gingivalis, is known to be a pathogen associated with chronic periodontitis. P. gingivalis possesses virulence factors such as fimbriae and gingipain proteinases. Fimbrial proteins are secreted to the cell surface as lipoproteins. In contrast, gingipain proteinases are secreted into the bacterial cell surface via the type IX secretion system (T9SS). The transport mechanisms of lipoproteins and T9SS cargo proteins are entirely different and remain unknown. Therefore, using the Tet-on system developed for the genus Bacteroides, we newly created a conditional gene expression system in P. gingivalis. We succeeded in establishing conditional expression of nanoluciferase and its derivatives for lipoprotein export, of FimA for a representative of lipoprotein export, and of T9SS cargo proteins such as Hbp35 and PorA for representatives of type 9 protein export. Using this system, we showed that the lipoprotein export signal, which has recently been found in other species in the phylum Bacteroidota, is also functional in FimA, and that a proton motive force inhibitor can affect type 9 protein export. Collectively, our conditional protein expression method is useful for screening inhibitors of virulence factors, and may be used to investigate the role of proteins essential to bacterial survival in vivo.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9801960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR-27a-5p alleviates periodontal inflammation by targeting phosphatase and tensin homolog deleted on chromosome ten. miR-27a-5p通过靶向10号染色体上缺失的磷酸酶和紧张素同源物来缓解牙周炎症。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-08-01 DOI: 10.1111/omi.12416
Li Deng, Peng-Cheng Huo, Mei-Ting Feng, Rui-Ling Wang, Rui Jing, Li-Jun Luo
{"title":"miR-27a-5p alleviates periodontal inflammation by targeting phosphatase and tensin homolog deleted on chromosome ten.","authors":"Li Deng,&nbsp;Peng-Cheng Huo,&nbsp;Mei-Ting Feng,&nbsp;Rui-Ling Wang,&nbsp;Rui Jing,&nbsp;Li-Jun Luo","doi":"10.1111/omi.12416","DOIUrl":"https://doi.org/10.1111/omi.12416","url":null,"abstract":"<p><strong>Introduction: </strong>MicroRNAs (miRNAs), a type of non-coding RNA, have been demonstrated to be essential posttranscriptional modulators in oral diseases and inflammatory responses. However, the specific role of miR-27a-5p in periodontitis requires further investigation. In this study, we used both cellular and animal models to determine how miR-27a-5p affects the pathogenesis of periodontitis and its associated biological functions.</p><p><strong>Methods: </strong>Quantitative real-time polymerase chain reaction and western blotting were used to analyze the expression of cytokines, phosphatase and tensin homolog deleted on chromosome ten (PTEN), and miR-27a-5p transcription. Investigation of alveolar bone resorption and inflammation of the periodontium in ligature-induced periodontitis in mice was performed using micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, and tartrate-resistant acid phosphatase (TRAP) staining. The binding of miR-27a-5p and PTEN was predicted using the TargetScan database and experimentally confirmed using dual luciferase reporter gene assays.</p><p><strong>Results: </strong>The inflamed gingiva showed lower levels of miR-27a-5p. Macrophages from miR-27a-5p<sup>-/-</sup> mice produced much higher quantities of pro-inflammatory cytokines owing to the stimulation of Porphyromonas gingivalis lipopolysaccharide, and miR-27a-5p<sup>-/-</sup> mice with ligature-induced periodontitis also exhibited more severe alveolar bone resorption and damage to the periodontium. Target validation assays identified PTEN as a direct target of bona. Blocking PTEN expression partially reduced inflammation, both in vitro and in vivo.</p><p><strong>Conclusions: </strong>miR-27a-5p alleviated the inflammatory response in periodontitis by targeting PTEN.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10152302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human papillomavirus and Epstein-Barr virus co-infection in oral and oropharyngeal squamous cell carcinomas: A systematic review and meta-analysis. 人乳头瘤病毒和eb病毒在口腔和口咽鳞状细胞癌中的联合感染:一项系统综述和荟萃分析
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-08-01 DOI: 10.1111/omi.12412
Rifat Rahman, Mushfiq H Shaikh, Divya Gopinath, Adi Idris, Newell W Johnson
{"title":"Human papillomavirus and Epstein-Barr virus co-infection in oral and oropharyngeal squamous cell carcinomas: A systematic review and meta-analysis.","authors":"Rifat Rahman,&nbsp;Mushfiq H Shaikh,&nbsp;Divya Gopinath,&nbsp;Adi Idris,&nbsp;Newell W Johnson","doi":"10.1111/omi.12412","DOIUrl":"https://doi.org/10.1111/omi.12412","url":null,"abstract":"<p><p>Squamous cell carcinoma of the oral cavity (OSCC) is the most common head-and-neck malignancy. Importantly, we are experiencing an alarming rise in the incidence of oropharyngeal squamous cell carcinoma (OPSCC) globally. Oncogenic viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), are known to be co-associated with OSCC and OPSCC cases. However, the reported incidence of HPV and EBV co-infection in OSCCs and OPSCCs globally is unknown. To address this, we performed a formal meta-analysis and systematic review on published studies that report the detection of both EBV and HPV in OSCCs and OPSCCs. Our analysis revealed 18 relevant studies out of a total of 1820 cases (1181 from the oral cavity and 639 from the oropharynx). Overall, HPV and EBV co-infection was found in 11.9% of OSCC and OPSCC cases combined (95% CI: 8%-14.1%). Based on anatomical subsite, dual positivity estimates were 10.5% (95% CI: 6.7%-15.1%) for OSCC and 14.2% (95% CI: 9.1%-21.3%) for OPSCC. The highest dual positivity rates described were in European countries: for OSCC 34.7% (95% CI: 25.9%-44.6%) in Sweden and for OPSCC, 23.4% (95% CI: 16.9%-31.5%) in Poland. Given these substantive prevalence rates, the value of detecting dual infection in the diagnosis and prognosis of these cancers deserves careful longitudinal studies, as do implications for cancer prevention and therapy. We further proposed molecular mechanisms that could explain how HPV and EBV could co-contribute to the aetiology of OSCCs and OPSCCs.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9787107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The involvement of CdhR in Porphyromonas gingivalis during nitric oxide stress. 一氧化氮应激期间牙龈卟啉单胞菌中 CdhR 的参与。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-08-01 Epub Date: 2023-05-03 DOI: 10.1111/omi.12414
Marie-Claire Boutrin, Arunima Mishra, Charles Wang, Yuetan Dou, Hansel M Fletcher
{"title":"The involvement of CdhR in Porphyromonas gingivalis during nitric oxide stress.","authors":"Marie-Claire Boutrin, Arunima Mishra, Charles Wang, Yuetan Dou, Hansel M Fletcher","doi":"10.1111/omi.12414","DOIUrl":"10.1111/omi.12414","url":null,"abstract":"<p><p>Porphyromonas gingivalis, the causative agent of adult periodontitis, must gain resistance to frequent oxidative and nitric oxide (NO) stress attacks from immune cells in the periodontal pocket to survive. Previously, we found that, in the wild-type and under NO stress, the expression of PG1237 (CdhR), the gene encoding for a putative LuxR transcriptional regulator previously called community development and hemin regulator (CdhR), was upregulated 7.7-fold, and its adjacent gene PG1236 11.9-fold. Isogenic mutants P. gingivalis FLL457 (ΔCdhR::ermF), FLL458 (ΔPG1236::ermF), and FLL459 (ΔPG1236-CdhR::ermF) were made by allelic exchange mutagenesis to determine the involvement of these genes in P. gingivalis W83 NO stress resistance. The mutants were black pigmented and β hemolytic and their gingipain activities varied with strains. FLL457 and FLL459 mutants were more sensitive to NO compared to the wild type, and complementation restored NO sensitivity to that of the wild type. DNA microarray analysis of FLL457 showed that approximately 2% of the genes were upregulated and over 1% of the genes downregulated under NO stress conditions compared to the wild type. Transcriptome analysis of FLL458 and FLL459 under NO stress showed differences in their modulation patterns. Some similarities were also noticed between all mutants. The PG1236-CdhR gene cluster revealed increased expression under NO stress and may be part of the same transcriptional unit. Recombinant CdhR showed binding activity to the predicted promoter regions of PG1459 and PG0495. Taken together, the data indicate that CdhR may play a role in NO stress resistance and be involved in a regulatory network in P. gingivalis.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11018363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9792413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gingipains are the important virulence factors of Porphyromonas gingivalis downregulating B10 cells. 牙龈痛是下调B10细胞的牙龈卟啉单胞菌的重要毒力因子。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-08-01 DOI: 10.1111/omi.12413
Hang Zou, Niu Zhou, Xiao Cheng, Yi Qiu, Wenhong Hou, Jianbo Sun
{"title":"Gingipains are the important virulence factors of Porphyromonas gingivalis downregulating B10 cells.","authors":"Hang Zou,&nbsp;Niu Zhou,&nbsp;Xiao Cheng,&nbsp;Yi Qiu,&nbsp;Wenhong Hou,&nbsp;Jianbo Sun","doi":"10.1111/omi.12413","DOIUrl":"https://doi.org/10.1111/omi.12413","url":null,"abstract":"<p><p>Porphyromonas gingivalis is a keystone pathogen in periodontitis. Our previous study indicated that periodontitis induced by P. gingivalis increased the percentage of CD19<sup>+</sup> B cells but decreased the ratio of IL-10-producing regulatory B cells (B10) in collagen-induced arthritis (CIA) mice. It is still unclear which virulence factors of P. gingivalis are involved in these processes. Here, we compared the effects of different components of P. gingivalis on the biogenesis of B10 cells and found that the decreased proportion of B10 cells mainly resulted from the undenatured proteins other than the DNA, RNA, or lipopolysaccharides of P. gingivalis. As gingipains are enzymes and virulence factors that play a vital role in the progression in periodontitis through affecting the innate and adaptive immune system, we then compared the influence of the wild-type (WT) strain of P. gingivalis (ATCC 33277) and its isogenic gingipain-null mutant (∆K∆RAB) on the differentiation of splenic B cells into B10 cells. Interestingly, compared to WT strain, ∆K∆RAB treatment increased the frequency of B10 cells as well as the expression of IL-6 in B cells. Furthermore, the acute peritonitis, an ideal model for the quick evaluation of immune effects of agents, induced by ∆K∆RAB, showed the higher IL-6 production and proportion of B10 cells compared with WT. Finally, we performed transcriptomic analysis to better understand the effects and possible mechanisms of gingipains on B cells. Compared with WT, ∆K∆RAB upregulated the PI3K-Akt pathway of B cells, which is important for IL-10 production and B10 cell biogenesis, and more activated Jak-STAT pathway, which is a classical signaling pathway mediated by IL-6. Cumulatively, this study preliminarily revealed that gingipains of P. gingivalis are vital virulence factors downregulating B10 cells and altering immune responses.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9780467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
vicR overexpression in Streptococcus mutans causes aggregation and affects interspecies competition. 变形链球菌中vicR的过表达引起聚集并影响种间竞争。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-06-01 DOI: 10.1111/omi.12407
Jiangchuan Yan, Tao Gong, Qizhao Ma, Ting Zheng, Jiamin Chen, Jing Li, Meiling Jing, Yongwang Lin, Xiaowan Wang, Lei Lei, Shida Wang, Jumei Zeng, Yuqing Li
{"title":"vicR overexpression in Streptococcus mutans causes aggregation and affects interspecies competition.","authors":"Jiangchuan Yan,&nbsp;Tao Gong,&nbsp;Qizhao Ma,&nbsp;Ting Zheng,&nbsp;Jiamin Chen,&nbsp;Jing Li,&nbsp;Meiling Jing,&nbsp;Yongwang Lin,&nbsp;Xiaowan Wang,&nbsp;Lei Lei,&nbsp;Shida Wang,&nbsp;Jumei Zeng,&nbsp;Yuqing Li","doi":"10.1111/omi.12407","DOIUrl":"https://doi.org/10.1111/omi.12407","url":null,"abstract":"<p><p>Streptococcus mutans is considered to be a major causative agent of dental caries. VicRK is a two-component signal transduction system (TCSTS) of S. mutans, which can regulate the virulence of S. mutans, such as biofilm formation, exopolysaccharide production, acid production, and acid resistance. Meanwhile, it can also regulate the production of mutacins (nlmC) through the TCSTS ComDE. In this study, we found that the vicR-overexpressing strain was more likely to aggregate to form cell clusters, leading to the formation of abnormal biofilm; the overexpression of vicR increased the length of the chain of S. mutans. Furthermore, the expression of the mutacins in the vicR overexpression strain was increased under aerobic conditions. Compared with the control strain and the parental strain, the vicR overexpression strain was more competitive against Streptococcus gordonii. But there was no significant difference against Streptococcus sanguinis. In clinical strains, the expression level of vicR was positively correlated with their competitive ability against S. gordonii. Transcriptional profiling revealed 24 significantly upregulated genes in the vicR-overexpressing strain, including nlmA, nlmB, nlmC, and nlmD encoding mutacins. Electrophoretic mobility shift assays and DNase I footprinting assays confirmed that VicR can directly bind to the promoter sequence of nlmD. Taken together, our findings further demonstrate that VicRK, an important TCSTS of S. mutans, is involved in S. mutans cell morphology and biofilm formation. VicRK regulates the production of more mutacins in S. mutans in response to oxygen stimulation. VicR can bind to the promoter sequence of nlmD, thereby directly regulating the production of mutacins NlmD.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9455941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Regulation of adhesin synthesis in Aggregatibacter actinomycetemcomitans. 放线菌中粘附素合成的调节。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-06-01 Epub Date: 2023-03-15 DOI: 10.1111/omi.12410
Jake Tristano, David R Danforth, Matthew J Wargo, Keith P Mintz
{"title":"Regulation of adhesin synthesis in Aggregatibacter actinomycetemcomitans.","authors":"Jake Tristano, David R Danforth, Matthew J Wargo, Keith P Mintz","doi":"10.1111/omi.12410","DOIUrl":"10.1111/omi.12410","url":null,"abstract":"<p><p>Aggregatibacter actinomycetemcomitans is a gram-negative bacterium associated with periodontal disease and a variety of disseminated extra-oral infections. Tissue colonization is mediated by fimbriae and non-fimbriae adhesins resulting in the formation of a sessile bacterial community or biofilm, which confers enhanced resistance to antibiotics and mechanical removal. The environmental changes experienced by A. actinomycetemcomitans during infection are detected and processed by undefined signaling pathways that alter gene expression. In this study, we have characterized the promoter region of the extracellular matrix protein adhesin A (EmaA), which is an important surface adhesin in biofilm biogenesis and disease initiation using a series of deletion constructs consisting of the emaA intergenic region and a promotor-less lacZ sequence. Two regions of the promoter sequence were found to regulate gene transcription and in silico analysis indicated the presence of multiple transcriptional regulatory binding sequences. Analysis of four regulatory elements, CpxR, ArcA, OxyR, and DeoR, was undertaken in this study. Inactivation of arcA, the regulator moiety of the ArcAB two-component signaling pathway involved in redox homeostasis, resulted in a decrease in EmaA synthesis and biofilm formation. Analysis of the promoter sequences of other adhesins identified binding sequences for the same regulatory proteins, which suggests that these proteins are involved in the coordinate regulation of adhesins required for colonization and pathogenesis.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9455982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信