Molecular Oral Microbiology最新文献

筛选
英文 中文
A novel SUCNR1 inhibitor alleviates dysbiosis through inhibition of host responses without direct interaction with host microbiota. 一种新型SUCNR1抑制剂通过抑制宿主反应而不与宿主微生物群直接相互作用来缓解微生态失调。
IF 2.8 3区 医学
Molecular Oral Microbiology Pub Date : 2024-04-01 Epub Date: 2023-09-16 DOI: 10.1111/omi.12431
Scott C Thomas, Yuqi Guo, Fangxi Xu, Deepak Saxena, Xin Li
{"title":"A novel SUCNR1 inhibitor alleviates dysbiosis through inhibition of host responses without direct interaction with host microbiota.","authors":"Scott C Thomas, Yuqi Guo, Fangxi Xu, Deepak Saxena, Xin Li","doi":"10.1111/omi.12431","DOIUrl":"10.1111/omi.12431","url":null,"abstract":"<p><p>Type 2 diabetes (T2D) is a chronic metabolic disorder in which insulin resistance and impaired insulin secretion result in altered metabolite balance, specifically elevated levels of circulating glucose and succinate, which increases the risk of many pathologies, including periodontitis. Succinate, a tricarboxylic acid (TCA) cycle intermediate, can be produced and metabolized by both host cells and host microbiota, where elevated levels serve as an inflammation and pathogen threat signal through activating the succinate G protein-coupled receptor, SUCNR1. Modulating succinate-induced SUCNR1 signaling remains a promising therapeutic approach for pathologies resulting in elevated levels of succinate, such as T2D and periodontitis. Here, we demonstrate hyperglycemia and elevated intracellular succinate in a T2D mouse model and determine gut microbiome composition. Drawing on previous work demonstrating the ability of a novel SUCNR1 antagonist, compound 7a, to block inflammation and alleviate dysbiosis in a mouse model, we examined if compound 7a has an impact on the growth and virulence gene expression of bacterial and fungal human microbiota in vitro, and if 7a could reduce bone loss in a periodontitis-induced mouse model. T2D mice harbored a significantly different gut microbiome, suggesting the altered metabolite profile of T2D causes shifts in host-microbial community structure, with enrichment in succinate producers and consumers and mucin-degrading bacteria. Bacterial and fungal cultures showed that 7a did not influence growth or virulence gene expression, suggesting the therapeutic effects of 7a are a direct result of 7a interacting with host cells and that alterations in microbial community structure are driven by reduced host SUCNR1 signaling. This work further suggests that targeting SUCNR1 signaling is a promising therapeutic approach in metabolic, inflammatory, or immune disorders with elevated succinate levels.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"80-90"},"PeriodicalIF":2.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10266107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusobacterium nucleatum triggers senescence phenotype in gingival epithelial cells. 核分枝杆菌引发牙龈上皮细胞衰老表型。
IF 2.8 3区 医学
Molecular Oral Microbiology Pub Date : 2024-04-01 Epub Date: 2023-09-18 DOI: 10.1111/omi.12432
Emmanuel Albuquerque-Souza, Benjamin Shelling, Min Jiang, Xia-Juan Xia, Kantapon Rattanaprukskul, Sinem Esra Sahingur
{"title":"Fusobacterium nucleatum triggers senescence phenotype in gingival epithelial cells.","authors":"Emmanuel Albuquerque-Souza, Benjamin Shelling, Min Jiang, Xia-Juan Xia, Kantapon Rattanaprukskul, Sinem Esra Sahingur","doi":"10.1111/omi.12432","DOIUrl":"10.1111/omi.12432","url":null,"abstract":"<p><p>The prevalence of periodontitis increases with physiological aging. However, whether bacteria associated with periodontal diseases foster aging and the mechanisms by which they may do so are unknown. Herein, we hypothesize that Fusobacterium nucleatum, a microorganism associated with periodontitis and several other age-related disorders, triggers senescence, a chief hallmark of aging responsible to reduce tissue repair capacity. Our study analyzed the senescence response of gingival epithelial cells and their reparative capacity upon long-term exposure to F. nucleatum. Specifically, we assessed (a) cell cycle arrest by analyzing the cyclin-dependent kinase inhibitors p16<sup>INK4a</sup> and p14<sup>ARF</sup> and their downstream cascade (pRb, p53, and p21) at both gene and protein levels, (b) lysosomal mediated dysfunction by using assays targeting the expression and activity of the senescence-associated β-galactosidase (SA-β-Gal) enzyme, and (c) nuclear envelope breakdown by assessing the expression of Lamin-B1. The consequences of the senescence phenotype mediated by F. nucleatum were further assessed using wound healing assays. Our results revealed that prolonged exposure to F. nucleatum promotes an aging-like phenotype as evidenced by the increased expression of pro-senescence markers (p16<sup>INK4a</sup> , p21, and pRb) and SA-β-Gal activity and reduced expression of the counter-balancing cascade (p14<sup>ARF</sup> and p53) and Lamin-B1. Furthermore, we also noted impaired wound healing capacity of gingival epithelial cells upon prolong bacterial exposure, which was consistent with the senescence-induced phenotype. Together, our findings provide a proof-of-concept evidence that F. nucleatum triggers a pro-senescence response in gingival epithelial cells. This might affect periodontal tissue homeostasis by reducing its repair capacity and, consequently, increasing susceptibility to periodontitis during aging.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"29-39"},"PeriodicalIF":2.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10339538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 39, Issue 2 封面图片,第 39 卷第 2 期
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2024-03-08 DOI: 10.1111/omi.12457
{"title":"Cover Image, Volume 39, Issue 2","authors":"","doi":"10.1111/omi.12457","DOIUrl":"https://doi.org/10.1111/omi.12457","url":null,"abstract":"","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"19 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Filifactor alocis enhances survival of Porphyromonas gingivalis W83 in response to H2 O2 -induced stress. 在h2o2诱导的应激下,丝状因子可提高牙龈卟啉单胞菌W83的存活率。
IF 2.8 3区 医学
Molecular Oral Microbiology Pub Date : 2024-02-01 Epub Date: 2023-12-01 DOI: 10.1111/omi.12445
Arunima Mishra, Yuetan Dou, Charles Wang, Hansel M Fletcher
{"title":"Filifactor alocis enhances survival of Porphyromonas gingivalis W83 in response to H<sub>2</sub> O<sub>2</sub> -induced stress.","authors":"Arunima Mishra, Yuetan Dou, Charles Wang, Hansel M Fletcher","doi":"10.1111/omi.12445","DOIUrl":"10.1111/omi.12445","url":null,"abstract":"<p><p>A dysbiotic microbial community whose members have specific/synergistic functions that are modulated by environmental conditions, can disturb homeostasis in the subgingival space leading to destructive inflammation, plays a role in the progression of periodontitis. Filifactor alocis, a gram-positive, anaerobic bacterium, is a newly recognized microbe that shows a strong correlation with periodontal disease. Our previous observations suggested F. alocis to be more resistant to oxidative stress compared to Porphyromonas gingivalis. The objective of this study is to further determine if F. alocis, because of its increased resistance to oxidative stress, can affect the survival of other 'established' periodontal pathogens under environmental stress conditions typical of the periodontal pocket. Here, we have shown that via their interaction, F. alocis protects P. gingivalis W83 under H<sub>2</sub> O<sub>2</sub> -induced oxidative stress conditions. Transcriptional profiling of the interaction of F. alocis and P. gingivalis in the presence of H<sub>2</sub> O<sub>2</sub> -induced stress revealed the modulation of several genes, including those with ABC transporter and other cellular functions. The ABC transporter operon (PG0682-PG0685) of P. gingivalis was not significant to its enhanced survival when cocultured with F. alocis under H<sub>2</sub> O<sub>2</sub> -induced oxidative stress. In F. alocis, one of the most highly up-regulated operons (FA0894-FA0897) is predicted to encode a putative manganese ABC transporter, which in other bacteria can play an essential role in oxidative stress protection. Collectively, the results may indicate that F. alocis could likely stabilize the microbial community in the inflammatory microenvironment of the periodontal pocket by reducing the oxidative environment. This strategy could be vital to the survival of other pathogens, such as P. gingivalis, and its ability to adapt and persist in the periodontal pocket.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"12-26"},"PeriodicalIF":2.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10842171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138470526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced transformation efficiency in Treponema denticola enabled by SyngenicDNA-based plasmids lacking restriction-modification target motifs. 缺乏限制性修饰靶基序的基于SyngenicDNA的质粒增强了齿密螺旋体的转化效率。
IF 2.8 3区 医学
Molecular Oral Microbiology Pub Date : 2023-12-01 Epub Date: 2023-10-25 DOI: 10.1111/omi.12441
Christopher D Johnston, M Paula Goetting-Minesky, Kelly Kennedy, Valentina Godovikova, Sara M Zayed, Richard J Roberts, J Christopher Fenno
{"title":"Enhanced transformation efficiency in Treponema denticola enabled by SyngenicDNA-based plasmids lacking restriction-modification target motifs.","authors":"Christopher D Johnston, M Paula Goetting-Minesky, Kelly Kennedy, Valentina Godovikova, Sara M Zayed, Richard J Roberts, J Christopher Fenno","doi":"10.1111/omi.12441","DOIUrl":"10.1111/omi.12441","url":null,"abstract":"<p><p>Oral spirochetes are among a small group of keystone pathogens contributing to dysregulation of tissue homeostatic processes that leads to breakdown of the tissue and bone supporting the teeth in periodontal disease. Additionally, our group has recently demonstrated that Treponema are among the dominant microbial genera detected intracellularly in tumor specimens from patients with oral squamous cell carcinoma. While over 60 species and phylotypes of oral Treponema have been detected, T. denticola is one of the few that can be grown in culture and the only one in which genetic manipulation is regularly performed. Thus, T. denticola is a key model organism for studying spirochete metabolic processes, interactions with other microbes, and host cell and tissue responses relevant to oral diseases, as well as venereal and nonvenereal treponematoses whose agents lack workable genetic systems. We previously demonstrated improved transformation efficiency using an Escherichia coli-T. denticola shuttle plasmid and its utility for expression in T. denticola of an exogenous fluorescent protein that is active under anaerobic conditions. Here, we expand on this work by characterizing T. denticola Type I and Type II restriction-modification (R-M) systems and designing a high-efficiency R-M-silent \"SyngenicDNA\" shuttle plasmid resistant to all T. denticola ATCC 35405 R-M systems. Resequencing of the ATCC 33520 genome revealed an additional Type I R-M system consistent with the relatively low transformation efficiency of the shuttle plasmid in this strain. Using SyngenicDNA approaches, we optimized shuttle plasmid transformation efficiency in T. denticola and used it to complement a defined T. denticola ΔfhbB mutant strain. We further report the first high-efficiency transposon mutagenesis of T. denticola using an R-M-silent, codon-optimized, himarC9 transposase-based plasmid. Thus, use of SyngenicDNA-based strategies and tools can enable further mechanistic examinations of T. denticola physiology and behavior.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"455-470"},"PeriodicalIF":2.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50162246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 38, Issue 5 封面图片,第38卷,第5期
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-10-12 DOI: 10.1111/omi.12440
{"title":"Cover Image, Volume 38, Issue 5","authors":"","doi":"10.1111/omi.12440","DOIUrl":"https://doi.org/10.1111/omi.12440","url":null,"abstract":"The cover image is based on the Original Article <i>Requirements for anti-aquaporin 5 autoantibody production in a mouse model</i> by Sabin Acharya et al., https://doi.org/10.1111/omi.12430.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"59 11-12","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oral microbial biomap in the drought environment: Sjogren's syndrome. 干旱环境中的口腔微生物生物标志物:干燥综合征。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-10-01 Epub Date: 2023-09-28 DOI: 10.1111/omi.12435
Laura Bustos-Lobato, Maria J Rus, Carlos Saúco, Aurea Simon-Soro
{"title":"Oral microbial biomap in the drought environment: Sjogren's syndrome.","authors":"Laura Bustos-Lobato,&nbsp;Maria J Rus,&nbsp;Carlos Saúco,&nbsp;Aurea Simon-Soro","doi":"10.1111/omi.12435","DOIUrl":"10.1111/omi.12435","url":null,"abstract":"<p><p>Sjogren's syndrome (SS) is an autoimmune disease that affects primarily the salivary glands, making perturbations in the oral ecosystem and potential factors of salivary flow that influence the onset and development of the disease. The oral cavity contains diverse microorganisms that inhabit various niches such as the oral microbial \"biomap.\" It does not seem specific enough to establish a characteristic microbiome, given the diversity of clinical manifestations, variable rates of salivary secretion, and influential risk factors in patients with SS. This review discusses the biogeography of the oral microbiome in patients with SS such as saliva, tongue, tooth, mucosa, and gum. The microorganisms that were more abundant in the different oral niches were Gram-positive species, suggesting a higher survival of cell wall bacteria in this arid oral environment. Reduced salivary flow appears not to be linked to the cause of dysbiosis alone but influences host-associated risk factors. However, much work remains to be done to establish the role of the microbiome in the etiopathogenesis of autoimmune diseases such as SS. Future studies of the microbiome in autoimmunity will shed light on the role of specific microorganisms that have never been linked before with SS.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"400-407"},"PeriodicalIF":3.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41136973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis. 微生物组研究中16S rRNA基因测序工作流程的批判性综述:从引物选择到高级数据分析。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-10-01 Epub Date: 2023-10-07 DOI: 10.1111/omi.12434
Alba Regueira-Iglesias, Carlos Balsa-Castro, Triana Blanco-Pintos, Inmaculada Tomás
{"title":"Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis.","authors":"Alba Regueira-Iglesias,&nbsp;Carlos Balsa-Castro,&nbsp;Triana Blanco-Pintos,&nbsp;Inmaculada Tomás","doi":"10.1111/omi.12434","DOIUrl":"10.1111/omi.12434","url":null,"abstract":"<p><p>The multi-batch reanalysis approach of jointly reevaluating gene/genome sequences from different works has gained particular relevance in the literature in recent years. The large amount of 16S ribosomal ribonucleic acid (rRNA) gene sequence data stored in public repositories and information in taxonomic databases of the same gene far exceeds that related to complete genomes. This review is intended to guide researchers new to studying microbiota, particularly the oral microbiota, using 16S rRNA gene sequencing and those who want to expand and update their knowledge to optimise their decision-making and improve their research results. First, we describe the advantages and disadvantages of using the 16S rRNA gene as a phylogenetic marker and the latest findings on the impact of primer pair selection on diversity and taxonomic assignment outcomes in oral microbiome studies. Strategies for primer selection based on these results are introduced. Second, we identified the key factors to consider in selecting the sequencing technology and platform. The process and particularities of the main steps for processing 16S rRNA gene-derived data are described in detail to enable researchers to choose the most appropriate bioinformatics pipeline and analysis methods based on the available evidence. We then produce an overview of the different types of advanced analyses, both the most widely used in the literature and the most recent approaches. Several indices, metrics and software for studying microbial communities are included, highlighting their advantages and disadvantages. Considering the principles of clinical metagenomics, we conclude that future research should focus on rigorous analytical approaches, such as developing predictive models to identify microbiome-based biomarkers to classify health and disease states. Finally, we address the batch effect concept and the microbiome-specific methods for accounting for or correcting them.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"347-399"},"PeriodicalIF":3.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41134858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Requirements for anti-aquaporin 5 autoantibody production in a mouse model. 小鼠模型中产生抗水通道蛋白5自身抗体的要求。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-10-01 Epub Date: 2023-09-18 DOI: 10.1111/omi.12430
Sabin Acharya, Ahreum Lee, Hyunjin Kim, Hyeong-Jin Kim, Youngnim Choi
{"title":"Requirements for anti-aquaporin 5 autoantibody production in a mouse model.","authors":"Sabin Acharya,&nbsp;Ahreum Lee,&nbsp;Hyunjin Kim,&nbsp;Hyeong-Jin Kim,&nbsp;Youngnim Choi","doi":"10.1111/omi.12430","DOIUrl":"10.1111/omi.12430","url":null,"abstract":"<p><p>Several oral bacteria, including Prevotella melaninogenica (Pm), have aquaporin (AQP) proteins homologous to human AQP5, a major water channel protein targeted in Sjogren's syndrome. This study aimed to understand the antigenic characteristics that induce autoantibodies against an AQP5 \"E\" epitope (AQP5E) in a mouse model using C57BL/6 mice. Immunization with a PmE-L peptide derived from Pm AQP, which contains amino acid mismatches both at the B- and T-cell epitopes, efficiently induced anti-AQP5E autoantibodies accompanied by increased germinal center (GC) B and follicular helper T cells in the draining lymph nodes. However, PmE, a peptide lacking a T-cell epitope, and AQP5E-L, an AQP5-derived self-peptide, hardly induced either anti-AQP5E autoantibodies or GC responses. Surprisingly, OTII-AQP5E, a peptide that replaced the self T-cell epitope of AQP5E-L with an ovalbumin-derived foreign T-cell epitope, was not any better than AQP5E-L in the induction of anti-AQP5E autoantibodies and GC response, despite the substantial expansion of CD4<sup>+</sup> T cells and production of anti-OTII-AQP5E antibodies. The complex of biotinylated PmE-L peptide and highly immunogenic streptavidin (SA) induced a strong extrafollicular B-cell response skewed toward the expansion of SA-specific B cells. However, the expansion of AQP5E-specific GC B cells was limited, resulting in the inefficient induction of anti-AQP5E autoantibodies. Collectively, our results have demonstrated that anti-AQP5E autoantibody production is only allowed when foreign B- and T-cell epitopes drive a strong GC response of AQP5E-specific B cells for affinity maturation. This study helps explain why cross-reactive anti-AQP5 autoantibodies are not produced during the immune response to Pm in most healthy people.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"442-453"},"PeriodicalIF":3.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10289319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the genetic and functional diversity of Porphyromonas gingivalis long fimbriae. 探讨牙龈卟啉单胞菌长菌毛的遗传和功能多样性。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-10-01 Epub Date: 2023-09-26 DOI: 10.1111/omi.12433
Hendrik Leonhard Meyer, Mohamed M H Abdelbary, Eva Miriam Buhl, Christoph Kuppe, Georg Conrads
{"title":"Exploring the genetic and functional diversity of Porphyromonas gingivalis long fimbriae.","authors":"Hendrik Leonhard Meyer,&nbsp;Mohamed M H Abdelbary,&nbsp;Eva Miriam Buhl,&nbsp;Christoph Kuppe,&nbsp;Georg Conrads","doi":"10.1111/omi.12433","DOIUrl":"10.1111/omi.12433","url":null,"abstract":"<p><p>Porphyromonas gingivalis is a key pathobiont in periodontitis. Its long fimbriae consist of a single anchor (FimB), a varying number of stalk (FimA), and three accessory (tip-related) proteins (FimC, FimD, and FimE). Based on 133 strains/genomes available, it was our aim to investigate the diversity within FimA and FimB and explain the variety of long fimbriae (super-)structures. Combining the new forward primer fimAnewF with the established fimAunivR, we were able to amplify and sequence fimA including its leader region covering all genotypes and serotypes for phylogenetic analysis. We designed two primer pairs sensing the presence of an internal stop codon in fimB with an impact on fimbrial length. Finally, we examined fimbrial secondary structures by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The phylogeny of fimA/FimA revealed two new subtypes (IIa and IIb) with specific changes in functional domains and thus adding to the current classification scheme (I, Ib, and II-V). Regarding evolution, we confirm that Porphyromonas gulae fimA-type A is closely related to human P. gingivalis strains of cluster Ib and might be its ancestor genotype. A fimB internal stop codon is rare and was found in ATCC 33277 only. Comparing P. gingivalis TEM/SEM pictures of type I ATCC 33277 with type V OMI622 revealed a broad spectrum of fimbrial structures including bundling, cell-cell knotting, and brick-wall formation. In conclusion, FimA forms more distinct subtypes than previously known. The bundling of long fimbriae, a mechanism known from EPEC/EHEC and Salmonella, is proposed and supported by TEM/SEM pictures for the first time here. The role and variations of terminal accessory FimC-E in superstructure formation and/or (co-) adhesion should be investigated more closely next.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"408-423"},"PeriodicalIF":3.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41127435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信