Molecular Oral Microbiology最新文献

筛选
英文 中文
Cover Image, Volume 39, Issue 2 封面图片,第 39 卷第 2 期
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2024-03-08 DOI: 10.1111/omi.12457
{"title":"Cover Image, Volume 39, Issue 2","authors":"","doi":"10.1111/omi.12457","DOIUrl":"https://doi.org/10.1111/omi.12457","url":null,"abstract":"","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porphyromonas gingivalis GroEL exacerbates orthotopic allograft transplantation vasculopathy via impairment of endothelial cell function. 牙龈卟啉菌 GroEL 通过损害内皮细胞功能加剧同种异体移植血管病变。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2024-02-04 DOI: 10.1111/omi.12453
Chien-Sung Tsai, Chun-Yao Huang, Yi-Ting Tsai, Chun-Ming Shih, Ze-Hao Lai, Chen-Wei Liu, Yi-Wen Lin, Feng-Yen Lin
{"title":"Porphyromonas gingivalis GroEL exacerbates orthotopic allograft transplantation vasculopathy via impairment of endothelial cell function.","authors":"Chien-Sung Tsai, Chun-Yao Huang, Yi-Ting Tsai, Chun-Ming Shih, Ze-Hao Lai, Chen-Wei Liu, Yi-Wen Lin, Feng-Yen Lin","doi":"10.1111/omi.12453","DOIUrl":"https://doi.org/10.1111/omi.12453","url":null,"abstract":"<p><p>Orthotopic allograft transplantation (OAT) is a significant approach to addressing organ failure. However, persistent immune responses to the allograft affect chronic rejection, which induces OAT vasculopathy (OATV) and organ failure. Porphyromonas gingivalis can infiltrate remote organs via the bloodstream, thereby intensifying the severity of cardiovascular, respiratory, and neurodegenerative diseases and cancer. GroEL, a virulence factor of P. gingivalis promotes pro-inflammatory cytokine production in host cells, which assumes to play a pivotal role in the pathogenesis of cardiovascular diseases. Although the aggravation of OATV is attributable to numerous factors, the role of GroEL remains ambiguous. Therefore, this study aimed to investigate the impact of GroEL on OATV. Aortic grafts extracted from PVG/Seac rats were transplanted into ACI/NKyo rats and in vitro human endothelial progenitor cell (EPC) and coronary artery endothelial cell (HCAEC) models. The experimental findings revealed that GroEL exacerbates OATV in ACI/NKyo rats by affecting EPC and smooth muscle progenitor cell (SMPC) function and enabling the anomalous accumulation of collagen. In vitro, GroEL spurs endothelial-mesenchymal transition in EPCs, reduces HCAEC tube formation and barrier function by downregulating junction proteins, accelerates HCAEC aging by lowering mitochondrial membrane potential and respiratory function, and impedes HCAEC migration by modulating cytoskeleton-associated molecules. This study suggests that P. gingivalis GroEL could potentially augment OATV by impacting vascular progenitor and endothelial cell functions.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139681308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Filifactor alocis enhances survival of Porphyromonas gingivalis W83 in response to H2 O2 -induced stress. 在h2o2诱导的应激下,丝状因子可提高牙龈卟啉单胞菌W83的存活率。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2024-02-01 Epub Date: 2023-12-01 DOI: 10.1111/omi.12445
Arunima Mishra, Yuetan Dou, Charles Wang, Hansel M Fletcher
{"title":"Filifactor alocis enhances survival of Porphyromonas gingivalis W83 in response to H<sub>2</sub> O<sub>2</sub> -induced stress.","authors":"Arunima Mishra, Yuetan Dou, Charles Wang, Hansel M Fletcher","doi":"10.1111/omi.12445","DOIUrl":"10.1111/omi.12445","url":null,"abstract":"<p><p>A dysbiotic microbial community whose members have specific/synergistic functions that are modulated by environmental conditions, can disturb homeostasis in the subgingival space leading to destructive inflammation, plays a role in the progression of periodontitis. Filifactor alocis, a gram-positive, anaerobic bacterium, is a newly recognized microbe that shows a strong correlation with periodontal disease. Our previous observations suggested F. alocis to be more resistant to oxidative stress compared to Porphyromonas gingivalis. The objective of this study is to further determine if F. alocis, because of its increased resistance to oxidative stress, can affect the survival of other 'established' periodontal pathogens under environmental stress conditions typical of the periodontal pocket. Here, we have shown that via their interaction, F. alocis protects P. gingivalis W83 under H<sub>2</sub> O<sub>2</sub> -induced oxidative stress conditions. Transcriptional profiling of the interaction of F. alocis and P. gingivalis in the presence of H<sub>2</sub> O<sub>2</sub> -induced stress revealed the modulation of several genes, including those with ABC transporter and other cellular functions. The ABC transporter operon (PG0682-PG0685) of P. gingivalis was not significant to its enhanced survival when cocultured with F. alocis under H<sub>2</sub> O<sub>2</sub> -induced oxidative stress. In F. alocis, one of the most highly up-regulated operons (FA0894-FA0897) is predicted to encode a putative manganese ABC transporter, which in other bacteria can play an essential role in oxidative stress protection. Collectively, the results may indicate that F. alocis could likely stabilize the microbial community in the inflammatory microenvironment of the periodontal pocket by reducing the oxidative environment. This strategy could be vital to the survival of other pathogens, such as P. gingivalis, and its ability to adapt and persist in the periodontal pocket.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10842171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138470526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual function of the O-antigen WaaL ligase of Aggregatibacter actinomycetemcomitans. 联合放线聚合杆菌O-抗原WaaL连接酶的双重功能。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-12-01 Epub Date: 2023-11-08 DOI: 10.1111/omi.12444
David R Danforth, Marcella Melloni, Richard Thorpe, Avi Cohen, Richard Voogt, Jake Tristano, Keith P Mintz
{"title":"Dual function of the O-antigen WaaL ligase of Aggregatibacter actinomycetemcomitans.","authors":"David R Danforth, Marcella Melloni, Richard Thorpe, Avi Cohen, Richard Voogt, Jake Tristano, Keith P Mintz","doi":"10.1111/omi.12444","DOIUrl":"10.1111/omi.12444","url":null,"abstract":"<p><p>Protein glycosylation is critical to the quaternary structure and collagen-binding activity of the extracellular matrix protein adhesin A (EmaA) associated with Aggregatibacter actinomycetemcomitans. The glycosylation of this large, trimeric autotransporter adhesin is postulated to be mediated by WaaL, an enzyme with the canonical function to ligate the O-polysaccharide (O-PS) antigen with a terminal sugar of the lipid A-core oligosaccharide of lipopolysaccharide (LPS). In this study, we have determined that the Escherichia coli waaL ortholog (rflA) does not restore collagen binding of a waaL mutant strain of A. actinomycetemcomitans but does restore O-PS ligase activity following transformation of a plasmid expressing waaL. Therefore, a heterologous E. coli expression system was developed constituted of two independently replicating plasmids expressing either waaL or emaA of A. actinomycetemcomitans to directly demonstrate the necessity of ligase activity for EmaA collagen binding. Proper expression of the protein encoded by each plasmid was characterized, and the individually transformed strains did not promote collagen binding. However, coexpression of the two plasmids resulted in a strain with a significant increase in collagen binding activity and a change in the biochemical properties of the protein. These results provide additional data supporting the novel hypothesis that the WaaL ligase of A. actinomycetemcomitans shares a dual role as a ligase in LPS biosynthesis and is required for collagen binding activity of EmaA.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71522141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced transformation efficiency in Treponema denticola enabled by SyngenicDNA-based plasmids lacking restriction-modification target motifs. 缺乏限制性修饰靶基序的基于SyngenicDNA的质粒增强了齿密螺旋体的转化效率。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-12-01 Epub Date: 2023-10-25 DOI: 10.1111/omi.12441
Christopher D Johnston, M Paula Goetting-Minesky, Kelly Kennedy, Valentina Godovikova, Sara M Zayed, Richard J Roberts, J Christopher Fenno
{"title":"Enhanced transformation efficiency in Treponema denticola enabled by SyngenicDNA-based plasmids lacking restriction-modification target motifs.","authors":"Christopher D Johnston, M Paula Goetting-Minesky, Kelly Kennedy, Valentina Godovikova, Sara M Zayed, Richard J Roberts, J Christopher Fenno","doi":"10.1111/omi.12441","DOIUrl":"10.1111/omi.12441","url":null,"abstract":"<p><p>Oral spirochetes are among a small group of keystone pathogens contributing to dysregulation of tissue homeostatic processes that leads to breakdown of the tissue and bone supporting the teeth in periodontal disease. Additionally, our group has recently demonstrated that Treponema are among the dominant microbial genera detected intracellularly in tumor specimens from patients with oral squamous cell carcinoma. While over 60 species and phylotypes of oral Treponema have been detected, T. denticola is one of the few that can be grown in culture and the only one in which genetic manipulation is regularly performed. Thus, T. denticola is a key model organism for studying spirochete metabolic processes, interactions with other microbes, and host cell and tissue responses relevant to oral diseases, as well as venereal and nonvenereal treponematoses whose agents lack workable genetic systems. We previously demonstrated improved transformation efficiency using an Escherichia coli-T. denticola shuttle plasmid and its utility for expression in T. denticola of an exogenous fluorescent protein that is active under anaerobic conditions. Here, we expand on this work by characterizing T. denticola Type I and Type II restriction-modification (R-M) systems and designing a high-efficiency R-M-silent \"SyngenicDNA\" shuttle plasmid resistant to all T. denticola ATCC 35405 R-M systems. Resequencing of the ATCC 33520 genome revealed an additional Type I R-M system consistent with the relatively low transformation efficiency of the shuttle plasmid in this strain. Using SyngenicDNA approaches, we optimized shuttle plasmid transformation efficiency in T. denticola and used it to complement a defined T. denticola ΔfhbB mutant strain. We further report the first high-efficiency transposon mutagenesis of T. denticola using an R-M-silent, codon-optimized, himarC9 transposase-based plasmid. Thus, use of SyngenicDNA-based strategies and tools can enable further mechanistic examinations of T. denticola physiology and behavior.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50162246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 38, Issue 5 封面图片,第38卷,第5期
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-10-12 DOI: 10.1111/omi.12440
{"title":"Cover Image, Volume 38, Issue 5","authors":"","doi":"10.1111/omi.12440","DOIUrl":"https://doi.org/10.1111/omi.12440","url":null,"abstract":"The cover image is based on the Original Article <i>Requirements for anti-aquaporin 5 autoantibody production in a mouse model</i> by Sabin Acharya et al., https://doi.org/10.1111/omi.12430.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene expression and metabolic activity of Streptococcus mutans during exposure to dietary carbohydrates glucose, sucrose, lactose, and xylitol. 变形链球菌暴露于膳食碳水化合物葡萄糖、蔗糖、乳糖和木糖醇期间的基因表达和代谢活性。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-10-01 Epub Date: 2023-07-13 DOI: 10.1111/omi.12428
Veronika Jurakova, Veronika Farková, Jiri Kucera, Katerina Dadakova, Martina Zapletalova, Katerina Paskova, Roman Reminek, Zdenek Glatz, Lydie Izakovicova Holla, Filip Ruzicka, Jan Lochman, Petra Borilova Linhartova
{"title":"Gene expression and metabolic activity of Streptococcus mutans during exposure to dietary carbohydrates glucose, sucrose, lactose, and xylitol.","authors":"Veronika Jurakova,&nbsp;Veronika Farková,&nbsp;Jiri Kucera,&nbsp;Katerina Dadakova,&nbsp;Martina Zapletalova,&nbsp;Katerina Paskova,&nbsp;Roman Reminek,&nbsp;Zdenek Glatz,&nbsp;Lydie Izakovicova Holla,&nbsp;Filip Ruzicka,&nbsp;Jan Lochman,&nbsp;Petra Borilova Linhartova","doi":"10.1111/omi.12428","DOIUrl":"10.1111/omi.12428","url":null,"abstract":"<p><p>Recent RNA sequencing studies have given us a deeper insight into the cariogenic impact of carbohydrate sources in the bacterium Streptococcus mutans, the principal microbial agent in dental caries etiopathogenesis. The process of dental caries development is facilitated by the ability of this bacterium to ferment some carbohydrates into organic acids contributing to a pH decrease in the oral cavity and the demineralization of the hard tissues of the tooth. Furthermore, in dental caries progression, biofilm formation, which starts and ends with free planktonic cells, plays an important role and has several unique properties called virulence factors. The most cariogenic carbohydrate is sucrose, an easily metabolizable source of energy that induces the acidification and synthesis of glucans, forming typical bacterial cell clumps. We used multifaceted methodological approaches to compare the transcriptomic and metabolomic profiles of S. mutans growing in planktonic culture on preferred and nonpreferred carbohydrates and in fasting conditions. Streptococcus mutans in a planktonic culture with lactose produced the same pH drop as glucose and sucrose. By contrast, xylitol and lactose showed high effectiveness in regulating intracellular polysaccharide metabolism, cell wall structure, and overall virulence involved in the initial phase of biofilm formation and structure but with an opposite pattern compared with sucrose and glucose. Our results confirmed the recent findings that xylitol and lactose play a vital role in biofilm structure. However, they do not reduce its formation, which is related to the creation of a cariogenic environment.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9773049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis. 微生物组研究中16S rRNA基因测序工作流程的批判性综述:从引物选择到高级数据分析。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-10-01 Epub Date: 2023-10-07 DOI: 10.1111/omi.12434
Alba Regueira-Iglesias, Carlos Balsa-Castro, Triana Blanco-Pintos, Inmaculada Tomás
{"title":"Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis.","authors":"Alba Regueira-Iglesias,&nbsp;Carlos Balsa-Castro,&nbsp;Triana Blanco-Pintos,&nbsp;Inmaculada Tomás","doi":"10.1111/omi.12434","DOIUrl":"10.1111/omi.12434","url":null,"abstract":"<p><p>The multi-batch reanalysis approach of jointly reevaluating gene/genome sequences from different works has gained particular relevance in the literature in recent years. The large amount of 16S ribosomal ribonucleic acid (rRNA) gene sequence data stored in public repositories and information in taxonomic databases of the same gene far exceeds that related to complete genomes. This review is intended to guide researchers new to studying microbiota, particularly the oral microbiota, using 16S rRNA gene sequencing and those who want to expand and update their knowledge to optimise their decision-making and improve their research results. First, we describe the advantages and disadvantages of using the 16S rRNA gene as a phylogenetic marker and the latest findings on the impact of primer pair selection on diversity and taxonomic assignment outcomes in oral microbiome studies. Strategies for primer selection based on these results are introduced. Second, we identified the key factors to consider in selecting the sequencing technology and platform. The process and particularities of the main steps for processing 16S rRNA gene-derived data are described in detail to enable researchers to choose the most appropriate bioinformatics pipeline and analysis methods based on the available evidence. We then produce an overview of the different types of advanced analyses, both the most widely used in the literature and the most recent approaches. Several indices, metrics and software for studying microbial communities are included, highlighting their advantages and disadvantages. Considering the principles of clinical metagenomics, we conclude that future research should focus on rigorous analytical approaches, such as developing predictive models to identify microbiome-based biomarkers to classify health and disease states. Finally, we address the batch effect concept and the microbiome-specific methods for accounting for or correcting them.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41134858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oral microbial biomap in the drought environment: Sjogren's syndrome. 干旱环境中的口腔微生物生物标志物:干燥综合征。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-10-01 Epub Date: 2023-09-28 DOI: 10.1111/omi.12435
Laura Bustos-Lobato, Maria J Rus, Carlos Saúco, Aurea Simon-Soro
{"title":"Oral microbial biomap in the drought environment: Sjogren's syndrome.","authors":"Laura Bustos-Lobato,&nbsp;Maria J Rus,&nbsp;Carlos Saúco,&nbsp;Aurea Simon-Soro","doi":"10.1111/omi.12435","DOIUrl":"10.1111/omi.12435","url":null,"abstract":"<p><p>Sjogren's syndrome (SS) is an autoimmune disease that affects primarily the salivary glands, making perturbations in the oral ecosystem and potential factors of salivary flow that influence the onset and development of the disease. The oral cavity contains diverse microorganisms that inhabit various niches such as the oral microbial \"biomap.\" It does not seem specific enough to establish a characteristic microbiome, given the diversity of clinical manifestations, variable rates of salivary secretion, and influential risk factors in patients with SS. This review discusses the biogeography of the oral microbiome in patients with SS such as saliva, tongue, tooth, mucosa, and gum. The microorganisms that were more abundant in the different oral niches were Gram-positive species, suggesting a higher survival of cell wall bacteria in this arid oral environment. Reduced salivary flow appears not to be linked to the cause of dysbiosis alone but influences host-associated risk factors. However, much work remains to be done to establish the role of the microbiome in the etiopathogenesis of autoimmune diseases such as SS. Future studies of the microbiome in autoimmunity will shed light on the role of specific microorganisms that have never been linked before with SS.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41136973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Requirements for anti-aquaporin 5 autoantibody production in a mouse model. 小鼠模型中产生抗水通道蛋白5自身抗体的要求。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-10-01 Epub Date: 2023-09-18 DOI: 10.1111/omi.12430
Sabin Acharya, Ahreum Lee, Hyunjin Kim, Hyeong-Jin Kim, Youngnim Choi
{"title":"Requirements for anti-aquaporin 5 autoantibody production in a mouse model.","authors":"Sabin Acharya,&nbsp;Ahreum Lee,&nbsp;Hyunjin Kim,&nbsp;Hyeong-Jin Kim,&nbsp;Youngnim Choi","doi":"10.1111/omi.12430","DOIUrl":"10.1111/omi.12430","url":null,"abstract":"<p><p>Several oral bacteria, including Prevotella melaninogenica (Pm), have aquaporin (AQP) proteins homologous to human AQP5, a major water channel protein targeted in Sjogren's syndrome. This study aimed to understand the antigenic characteristics that induce autoantibodies against an AQP5 \"E\" epitope (AQP5E) in a mouse model using C57BL/6 mice. Immunization with a PmE-L peptide derived from Pm AQP, which contains amino acid mismatches both at the B- and T-cell epitopes, efficiently induced anti-AQP5E autoantibodies accompanied by increased germinal center (GC) B and follicular helper T cells in the draining lymph nodes. However, PmE, a peptide lacking a T-cell epitope, and AQP5E-L, an AQP5-derived self-peptide, hardly induced either anti-AQP5E autoantibodies or GC responses. Surprisingly, OTII-AQP5E, a peptide that replaced the self T-cell epitope of AQP5E-L with an ovalbumin-derived foreign T-cell epitope, was not any better than AQP5E-L in the induction of anti-AQP5E autoantibodies and GC response, despite the substantial expansion of CD4<sup>+</sup> T cells and production of anti-OTII-AQP5E antibodies. The complex of biotinylated PmE-L peptide and highly immunogenic streptavidin (SA) induced a strong extrafollicular B-cell response skewed toward the expansion of SA-specific B cells. However, the expansion of AQP5E-specific GC B cells was limited, resulting in the inefficient induction of anti-AQP5E autoantibodies. Collectively, our results have demonstrated that anti-AQP5E autoantibody production is only allowed when foreign B- and T-cell epitopes drive a strong GC response of AQP5E-specific B cells for affinity maturation. This study helps explain why cross-reactive anti-AQP5 autoantibodies are not produced during the immune response to Pm in most healthy people.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10289319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信