Beatriz Bezerra, Mark Fisher, Flavia Q Pirih, Maísa Casarin
{"title":"The potential impact of periodontitis on cerebral small vessel disease.","authors":"Beatriz Bezerra, Mark Fisher, Flavia Q Pirih, Maísa Casarin","doi":"10.1111/omi.12443","DOIUrl":"10.1111/omi.12443","url":null,"abstract":"<p><p>Cerebral small vessel disease (CSVD) is a term used to describe abnormalities in the intracranial microvasculature affecting small arteries, arterioles, capillaries, and venules. The etiology of these conditions is not fully understood but inflammation appears to play a significant role. Periodontal diseases have been associated with conditions such as stroke and dementia, which are clinical consequences of CSVD. Periodontitis is a highly prevalent chronic multifactorial inflammatory disease regulated by the host immune response against pathogenic bacterial colonization around the teeth. The inflammatory response and the microbial dysbiosis produce pro-inflammatory cytokines that can reach the brain and promote local changes. This review will explore the potential association between periodontitis and CSVD by assessing the impact of periodontitis-induced inflammation and periodontopathogenic bacteria on the underlying mechanisms leading to CSVD. Given the association of periodontitis with stroke and dementia, which are clinical features of CSVD, it may be possible to suggest a link with CSVD. Current evidence linking periodontitis with neuroimaging findings of CSVD enforces the possible link between these conditions.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"190-198"},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71483787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catherine Petit, Shauna Culshaw, Roland Weiger, Olivier Huck, Philipp Sahrmann
{"title":"Impact of treatment of rheumatoid arthritis on periodontal disease: A review.","authors":"Catherine Petit, Shauna Culshaw, Roland Weiger, Olivier Huck, Philipp Sahrmann","doi":"10.1111/omi.12454","DOIUrl":"10.1111/omi.12454","url":null,"abstract":"<p><strong>Background: </strong>Numerous studies support a bidirectional association between rheumatoid arthritis (RA), a chronic autoimmune degenerative inflammatory joint disease, and periodontitis, a chronic inflammatory disease caused by the immune reaction to bacteria organized in biofilms. RA and periodontitis are both multifactorial chronic inflammatory diseases that share common modifiable and non-modifiable risk factors. There is no cure for RA; treatment is based on lifestyle modifications and a variety of medications: nonsteroidal anti-inflammatory drugs (NSAID), glucocorticoids, and disease-modifying antirheumatic drugs (DMARDs, e.g., conventional synthetic DMARDs [csDMARDs]; biological DMARDs [bDMARD] and targeted synthetic DMARDs). There are molecular pathways of inflammation that are common to both RA and periodontitis. Thus, there is a potential effect of RA treatments on periodontitis. This systematic review aims to assess the impact of antirheumatic agents on periodontal conditions of patients suffering from both RA and periodontitis.</p><p><strong>Methods: </strong>PubMed/MEDLINE, Cochrane Library, and Embase online databases were systematically explored, and a manual search was performed to identify relevant studies published until January 2023. This review is registered in the PROSPERO database (CRD42023409006).</p><p><strong>Results: </strong>A total of 2827 articles were identified, and 35 fulfilled the inclusion criteria. The included studies generally show a consensus that, at normal dosage, NSAID and corticosteroids have negligible impact on periodontium. Similarly, csDMARD alone or in combination with other csDMARD demonstrated no adverse effect on periodontium. Monotherapy with bDMARD had a positive effect on periodontal pocket depths and gingival inflammation in the longitudinal studies up to 6 months but showed negligible effect on the periodontium in interventional studies with a longer follow-up (9 months and 15.1 months). However, the combination of tumor necrosis factor (TNF)-α inhibitors + methotrexate (MTX) was associated with a rise in gingival inflammation. Due to the considerable heterogeneity of the study designs, a meta-analysis could not reasonably be performed.</p><p><strong>Conclusion: </strong>Within the limitations of the available studies, there is evidence to suggest that bDMARD monotherapy may improve the periodontal condition of RA patients with periodontal disease to a certain extent; the concomitant medication of TNF inhibitor + MTX could worsen gingival inflammation. More data are required to understand the impact of RA therapies on periodontal health.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"199-224"},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139741449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dying for a cause: The pathogenic manipulation of cell death and efferocytic pathways.","authors":"Kelley N Cooper, Jan Potempa, Juhi Bagaitkar","doi":"10.1111/omi.12436","DOIUrl":"10.1111/omi.12436","url":null,"abstract":"<p><p>Cell death is a natural consequence of infection. However, although the induction of cell death was solely thought to benefit the pathogen, compelling data now show that the activation of cell death pathways serves as a nuanced antimicrobial strategy that couples pathogen elimination with the generation of inflammatory cytokines and the priming of innate and adaptive cellular immunity. Following cell death, the phagocytic uptake of the infected dead cell by antigen-presenting cells and the subsequent lysosomal fusion of the apoptotic body containing the pathogen serve as an important antimicrobial mechanism that furthers the development of downstream adaptive immune responses. Despite the complexity of regulated cell death pathways, pathogens are highly adept at evading them. Here, we provide an overview of the remarkable diversity of cell death and efferocytic pathways and discuss illustrative examples of virulence strategies employed by pathogens, including oral pathogens, to counter their activation and persist within the host.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"165-179"},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41117892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extracellular vesicles-Potential link between periodontal disease and diabetic complications.","authors":"Shengyuan Huang, Jiang Lin, Xiaozhe Han","doi":"10.1111/omi.12449","DOIUrl":"10.1111/omi.12449","url":null,"abstract":"<p><p>It has long been suggested that a bidirectional impact exists between periodontitis and diabetes. Periodontitis may affect diabetes glycemic control, insulin resistance, and diabetic complications. Diabetes can worsen periodontitis by delaying wound healing and increasing the chance of infection. Extracellular vesicles (EVs) are heterogeneous particles of membrane-enclosed spherical structure secreted by eukaryotes and prokaryotes and play a key role in a variety of diseases. This review will introduce the biogenesis, release, and biological function of EVs from a microbial and host cell perspective, discuss the functional properties of EVs in the development of periodontitis and diabetes, and explore their role in the pathogenesis and clinical application of these two diseases. Their clinical implication and diagnostic value are also discussed.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"225-239"},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Loss of signal transducer and activator of transcription 3 in osteoblasts impaired the bone healing in inflammatory microenvironment.","authors":"Jingyi Feng, Zijing Huang, Jiarui Lu, Laiting Chan, Xin Feng, Lizhen Lei, Zhuwei Huang, Lichieh Lin, Yichen Yao, Xiaolei Zhang","doi":"10.1111/omi.12425","DOIUrl":"10.1111/omi.12425","url":null,"abstract":"<p><strong>Introduction: </strong>This study aimed to investigate the effect of Stat3 on the osteoblast-mediated bone healing in the inflammatory lesion.</p><p><strong>Methods: </strong>The conditional knockout of Stat3 in osteoblasts (Stat3 CKO) was generated via the Cre-loxP recombination system using Osterix-Cre transgenic mice. The calvarial bone inflammatory lesions were established on both Stat3 CKO and wild-type mice, then harvested to assess the bone healing. In response to lipopolysaccharide (LPS) stimulation, osteoblasts from Stat3 CKO and wild-type mice were subjected to examine the formation of calcium deposits, the expression of osteogenic markers (i.e., Runx2, OPN, COL1A1), and osteoclast-related markers (i.e., RANKL, OPG). The EdU and transwell assays were performed to assess the proliferation and migration of the cells.</p><p><strong>Results: </strong>A decrease in bone mass and an increase in osteolysis were found in the inflammatory lesions on Stat3 CKO mice when compared with the control. More osteoclastic-like cells and an increased expression of RANKL were observed in Stat3 CKO mice. Both mRNA and protein expressions of Stat3 and osteogenic markers in the lesions were significantly decreased in Stat3 CKO mice. After co-cultured with osteogenic medium, the Stat3-deficient osteoblasts were found with a significant decrease in calcium deposits and the expression of osteogenic markers, and with a significant increased expression of RANKL. The impaired ossification of Stat3-deficient osteoblasts was even more pronounced with the presence of lipopolysaccharides in vitro. The most decrease in cell proliferation and migration was found in Stat3-deficient osteoblasts in response to LPS.</p><p><strong>Conclusions: </strong>Loss of Stat3 in osteoblasts impaired bone healing in an inflammatory microenvironment.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"136-151"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9676799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carolina Duarte, Chiaki Yamada, Bidii Ngala, Christopher Garcia, Juliet Akkaoui, Maxim Birsa, Anny Ho, Amilia Nusbaum, Hawra AlQallaf, Vanchit John, Alexandru Movila
{"title":"Effects of IL-34 and anti-IL-34 neutralizing mAb on alveolar bone loss in a ligature-induced model of periodontitis.","authors":"Carolina Duarte, Chiaki Yamada, Bidii Ngala, Christopher Garcia, Juliet Akkaoui, Maxim Birsa, Anny Ho, Amilia Nusbaum, Hawra AlQallaf, Vanchit John, Alexandru Movila","doi":"10.1111/omi.12437","DOIUrl":"10.1111/omi.12437","url":null,"abstract":"<p><p>Macrophage colony-stimulating factor (M-CSF) and interleukin-34 (IL-34) are ligands for the colony-stimulating factor-1 receptor (CSF-1r) expressed on the surface of monocyte/macrophage lineage cells. The importance of coordinated signaling between M-CSF/receptor activator of the nuclear factor kappa-Β ligand (RANKL) in physiological and pathological bone remodeling and alveolar bone loss in response to oral bacterial colonization is well established. However, our knowledge about the IL-34/RANKL signaling in periodontal bone loss remains limited. Recently published cohort studies have demonstrated that the expression patterns of IL-34 are dramatically elevated in gingival crevicular fluid collected from patients with periodontitis. Therefore, the present study aims to evaluate the effects of IL-34 on osteoclastogenesis in vitro and in experimental ligature-mediated model of periodontitis using male mice. Our initial in vitro study demonstrated increased RANKL-induced osteoclastogenesis of IL-34-primed osteoclast precursors (OCPs) compared to M-CSF-primed OCPs. Using an experimental model of ligature-mediated periodontitis, we further demonstrated elevated expression of IL-34 in periodontal lesions. In contrast, M-CSF levels were dramatically reduced in these periodontal lesions. Furthermore, local injections of mouse recombinant IL-34 protein significantly elevated cathepsin K activity, increased the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and promoted alveolar bone loss in periodontitis lesions. In contrast, anti-IL-34 neutralizing monoclonal antibody significantly reduced the level of alveolar bone loss and the number of TRAP-positive osteoclasts in periodontitis lesions. No beneficial effects of locally injected anti-M-CSF neutralizing antibody were observed in periodontal lesions. This study illustrates the role of IL-34 in promoting alveolar bone loss in periodontal lesions and proposes the potential of anti-IL34 monoclonal antibody (mAb)-based therapeutic regimens to suppress alveolar bone loss in periodontitis lesions.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"93-102"},"PeriodicalIF":2.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71413149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tyler M Guido, Samuel D Ratcliffe, Amanda Rahmlow, Matthew A Zambrello, Anthony A Provates, Robert B Clark, Michael B Smith, Frank C Nichols
{"title":"Metabolism of serine/glycine lipids by human gingival cells in culture.","authors":"Tyler M Guido, Samuel D Ratcliffe, Amanda Rahmlow, Matthew A Zambrello, Anthony A Provates, Robert B Clark, Michael B Smith, Frank C Nichols","doi":"10.1111/omi.12439","DOIUrl":"10.1111/omi.12439","url":null,"abstract":"<p><p>Porphyromonas gingivalis produces five classes of serine/glycine lipids that are recovered in lipid extracts from periodontitis-afflicted teeth and diseased gingival tissues, particularly at sites of periodontitis. Because these lipids are recovered in diseased gingival tissues, the purpose of the present study was to evaluate the capacity of cultured human gingival fibroblasts (HGF), keratinocytes, and macrophages to hydrolyze these lipids. We hypothesize that one or more of these cell types will hydrolyze the serine/glycine lipids. The primary aim was to treat these cell types for increasing time in culture with individual highly enriched serine/glycine lipid preparations. At specified times, cells and culture media samples were harvested and extracted for hydrolysis products. The serine/glycine lipids and hydrolysis products were quantified using liquid chromatography-mass spectrometry (LC-MS) and free fatty acids were quantified using gas chromatograph-mass spectrometer. LC-MS analysis used two different mass spectrometric methods. This study revealed that treatment of HGF or macrophage (THP1) cells with lipid (L) 654 resulted in breakdown to L342 and subsequent release into culture medium. However, L654 was converted only to L567 in gingival keratinocytes. By contrast, L1256 was converted to L654 by fibroblasts and macrophages but no further hydrolysis or release into medium was observed. Gingival keratinocytes showed no hydrolysis of L1256 to smaller lipid products but because L1256 was not recovered in these cells, it is not clear what hydrolysis products are produced from L1256. Although primary cultures of gingival fibroblasts and macrophages are capable of hydrolyzing specific serine/glycine lipids, prior analysis of lipid extracts from diseased gingival tissues revealed significantly elevated levels of L1256 in diseased tissues. These results suggest that the hydrolysis of bacterial lipids in gingival tissues may reduce the levels of specific lipids, but the hydrolysis of L1256 is not sufficiently rapid to prevent significant accumulation at periodontal disease sites.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"103-112"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41236900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanfang Zhao, Kai Yang, Thalyta Amanda Ferreira, Xuejia Kang, Xu Feng, Jannet Katz, Suzanne M Michalek, Ping Zhang
{"title":"Activation of liver X receptors suppresses the abundance and osteoclastogenic potential of osteoclast precursors and periodontal bone loss.","authors":"Yanfang Zhao, Kai Yang, Thalyta Amanda Ferreira, Xuejia Kang, Xu Feng, Jannet Katz, Suzanne M Michalek, Ping Zhang","doi":"10.1111/omi.12447","DOIUrl":"10.1111/omi.12447","url":null,"abstract":"<p><p>Liver-X receptors (LXRs) are essential nuclear hormone receptors involved in cholesterol and lipid metabolism. They are also believed to regulate inflammation and physiological and pathological bone turnover. We have previously shown that infection with the periodontal pathogen Porphyromonas gingivalis (Pg) in mice increases the abundance of CD11b<sup>+</sup>c-fms<sup>+</sup>Ly6C<sup>hi</sup> cells in bone marrow (BM), spleen (SPL), and peripheral blood. These cells also demonstrated enhanced osteoclastogenic activity and a distinctive gene profile following Pg infection. Here, we investigated the role of LXRs in regulating these osteoclast precursors (OCPs) and periodontal bone loss. We found that Pg infection downregulates the gene expression of LXRs, as well as ApoE, a transcription target of LXRs, in CD11b<sup>+</sup>c-fms<sup>+</sup>Ly6C<sup>hi</sup> OCPs. Activation of LXRs by treatment with GW3965, a selective LXR agonist, significantly decreased Pg-induced accumulation of CD11b<sup>+</sup>c-fms<sup>+</sup>Ly6C<sup>hi</sup> population in BM and SPL. GW3965 treatment also significantly suppressed the osteoclastogenic potential of these OCPs induced by Pg infection. Furthermore, the activation of LXRs reduces the abundance of OCPs systemically in BM and locally in the periodontium, as well as mitigates gingival c-fms expression and periodontal bone loss in a ligature-induced periodontitis model. These data implicate a novel role of LXRs in regulating OCP abundance and osteoclastogenic potential in inflammatory bone loss.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"125-135"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138807555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaoxu Chen, Rahul Debnath, Ifeoma Chikelu, Jonathan X Zhou, Kang I Ko
{"title":"Primed inflammatory response by fibroblast subset is necessary for proper oral and cutaneous wound healing.","authors":"Zhaoxu Chen, Rahul Debnath, Ifeoma Chikelu, Jonathan X Zhou, Kang I Ko","doi":"10.1111/omi.12442","DOIUrl":"10.1111/omi.12442","url":null,"abstract":"<p><p>Fibroblasts are ubiquitous mesenchymal cells that exhibit considerable molecular and functional heterogeneity. Besides maintaining stromal integrity, oral fibroblast subsets are thought to play an important role in host-microbe interaction during injury repair, which is not well explored in vivo. Here, we characterize a subset of fibroblast lineage labeled by paired-related homeobox-1 promoter activity (Prx1Cre<sup>+</sup>) in oral mucosa and skin and demonstrate these fibroblasts readily respond to microbial products to facilitate the normal wound healing process. Using a reporter mouse model, we determined that Prx1Cre<sup>+</sup> fibroblasts had significantly higher expression of toll-like receptors 2 and 4 compared to other fibroblast populations. In addition, Prx1 immunopositive cells exhibited heightened activation of inflammatory transcription factor NF-κB during the early wound healing process. At the cytokine level, CXCL1 and CCL2 were significantly upregulated by Prx1Cre<sup>+</sup> fibroblasts at baseline and upon LPS stimulation. Importantly, lineage-specific knockout to prevent NF-κB activation in Prx1Cre<sup>+</sup> fibroblasts drastically impaired both oral and skin wound healing processes, which was linked to reduced macrophage infiltration, failure to resolve inflammation, and clearance of bacteria. Together, our data implicate a pro-healing role of Prx1-lineage fibroblasts by facilitating early macrophage recruitment and bacterial clearance.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"113-124"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71413150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}