Molecular NeurobiologyPub Date : 2025-02-01Epub Date: 2024-07-31DOI: 10.1007/s12035-024-04364-5
Shuqiang Zhang, Jian Yang, Jie Xu, Jing Li, Lian Xu, Nana Jin, Xiaoyu Li
{"title":"Integrative mRNA and miRNA Expression Profiles from Developing Zebrafish Head Highlight Brain-Preference Genes and Regulatory Networks.","authors":"Shuqiang Zhang, Jian Yang, Jie Xu, Jing Li, Lian Xu, Nana Jin, Xiaoyu Li","doi":"10.1007/s12035-024-04364-5","DOIUrl":"10.1007/s12035-024-04364-5","url":null,"abstract":"<p><p>Zebrafish is an emerging animal model for studying molecular mechanism underlying neurodevelopmental disorder due to its advantage characters. miRNAs are small non-coding RNAs that play a key role in brain development. Understanding of dynamic transcriptional and post-transcriptional molecules and their regulation during the head development is important for the study of neurodevelopmental disorder. In this study, we performed the high-throughput sequencing of mRNAs and miRNAs in developing zebrafish head from pharyngula to early larval stages and carried out bioinformatic analysis including differential expression and functional enrichment as well as joint analysis of miRNAs and mRNAs, and also compared with other related public sequencing datasets to aid our interpretation. A large number of differential expression genes with a large fold change were detected during the head development. Further clustering and functional enrichment analyses indicated that genes in late stage were most related with synaptic signaling. Overlap test analysis showed a significant enrichment of brain-preference and synapse-associated gene set in the head transcriptome compared with the whole embryo transcriptome. We also constructed miRNA-mRNA network for those brain-preference genes and focused on those densely connected network components. CRISPR-Cas9-mediated snap25b mutants led to embryonic development defects and decreases locomotor activity. Altogether, the present study provides developmental profiles of head-enriched mRNAs and miRNAs at three critical windows for nervous system development, which may contribute to the study of neurodevelopmental disorder.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"2148-2162"},"PeriodicalIF":4.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasma Proteomes and Genome-Wide Association Data for Causal Protein Identification in Stroke.","authors":"Lisi Xu, Ruonan Zhang, Xiaolin Zhang, Bing Liu, Daifa Huang, Yanxia Liu, Xiuli Shang","doi":"10.1007/s12035-024-04411-1","DOIUrl":"10.1007/s12035-024-04411-1","url":null,"abstract":"<p><p>Plasma proteins are promising biomarkers and potential drug targets for stroke. This study aimed to explore whether there is a causal relationship between plasma proteins and subtypes of stroke using a Mendelian randomization (MR) approach. A two-sample bidirectional Mendelian randomization approach was employed to investigate the causal link between plasma proteins and stroke. Data on plasma proteins were obtained from three studies, including INTERVAL, and pooled stroke information was sourced from the MEGASTROKE consortium and the UK Biobank dataset, covering four subtypes of stroke. MR analyses were primarily conducted using inverse variance weighting, and sensitivity analyses were also performed. Finally, potential reverse causality was assessed using bidirectional MR. We identified two proteins causally associated with stroke: one as a potential therapeutic target and another as a protective factor. CXCL8 was found to be positively associated with the risk of developing large-artery atherosclerotic (LAA) stroke (OR, 1.005; 95% CI 1.001 to 1.010; p = 0.022), whereas TNFRSF11b was negatively correlated with the risk of developing LAA stroke (OR, 0.937; 95% CI 0.892 to 0.984; p = 0.010), independently of other stroke subtypes. Reverse bivariate analysis did not indicate that ischemic stroke was causally associated with CXCL8 and TNFRSF11b. There is a causal relationship between CXCL8 and TNFRSF11b with LAA stroke, independent of other subtypes. This study offers a new perspective on the genetics of stroke.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"2450-2458"},"PeriodicalIF":4.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AQP4- and Kir4.1-Mediated Müller Cell Oedema Is Involved in Retinal Injury Induced By Hypobaric Hypoxia.","authors":"Cong Han, Yuting Li, Xingxing Zheng, Xiaoxia Zhang, Guonian Li, Liangtao Zhao, Zhaoqian Chen, Yi Yang, Wenfang Zhang","doi":"10.1007/s12035-024-04382-3","DOIUrl":"10.1007/s12035-024-04382-3","url":null,"abstract":"<p><p>Hypobaric hypoxia is the main cause of high-altitude retinopathy (HAR). Retinal oedema is the key pathological change in HAR. However, its pathological mechanism is not clear. In this study, a 5000-m hypobaric hypoxic environment was simulated. Haematoxylin and eosin (H&E) staining and electrophysiological (ERG) detection were used to observe the morphological and functional changes in the retina of mice under hypobaric hypoxia for 2-72 h. Toluidine blue staining and transmission electron microscopy were used to observe the morphology of Müller cells in the hypobaric hypoxia groups. The functional changes and oedema mechanism of Müller cells were detected by immunofluorescence and western blotting. The expression levels of glutamine synthetase (GS), glial fibrillary acidic protein (GFAP), aquaporin 4 (AQP4), and inwardly rectifying potassium channel subtype 4.1 (Kir4.1) in Müller cells were quantitatively analysed. This study revealed that retinal oedema gradually increased with prolonged exposure to a 5000-m hypobaric hypoxic environment. In addition, the ERG showed that the time delay and amplitude of the a-wave and b-wave decreased. The expression of GS decreased, and the expression of GFAP increased in Müller cells after exposure to hypobaric hypoxia for 4 h. At the same time, retinal AQP4 expression increased, and Kir4.1 expression decreased. The oedema and functional changes in Müller cells are consistent with the time point of retinal oedema. In conclusion, Müller cell oedema is involved in retinal oedema induced by hypobaric hypoxia. An increase in AQP4 and a decrease in Kir4.1 are the main causes of Müller cell oedema caused by hypobaric hypoxia.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"2012-2022"},"PeriodicalIF":4.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BDNF-TrkB Signaling Pathway in Spinal Cord Injury: Insights and Implications.","authors":"Hedieh Sadat Shamsnia, Amirreza Peyrovinasab, Dorsa Amirlou, Shirin Sirouskabiri, Fatemeh Rostamian, Nasim Basiri, Leila Mohaghegh Shalmani, Mehrdad Hashemi, Kiavash Hushmandi, Amir Hossein Abdolghaffari","doi":"10.1007/s12035-024-04381-4","DOIUrl":"10.1007/s12035-024-04381-4","url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a neurodegenerative disorder that has critical impact on patient's life expectance and life span, and this disorder also leads to negative socioeconomic features. SCI is defined as a firm collision to the spinal cord which leads to the fracture and the dislocation of vertebrae. The current available treatment is surgery. However, it cannot fully treat SCI, and many consequences remain after the surgery. Accordingly, finding new therapeutics is critical. BDNF-TrkB signaling is a vital signaling in neuronal differentiation, survival, overgrowth, synaptic plasticity, etc. Hence, many studies evaluate its impact on various neurodegenerative disorders. There are several studies evaluating this signaling in SCI, and they show promising outcomes. It was shown that various exercises, chemical interventions, etc. had significant positive impact on SCI by affecting BDNF-TrkB signaling pathway. This study aims to accumulate and evaluate these data and inspect whether this signaling is effective or not.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"1904-1944"},"PeriodicalIF":4.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular NeurobiologyPub Date : 2025-02-01Epub Date: 2024-08-07DOI: 10.1007/s12035-024-04408-w
Samudra Gupta, Subhra Prakash Hui
{"title":"Epigenetic Cross-Talk Between Sirt1 and Dnmt1 Promotes Axonal Regeneration After Spinal Cord Injury in Zebrafish.","authors":"Samudra Gupta, Subhra Prakash Hui","doi":"10.1007/s12035-024-04408-w","DOIUrl":"10.1007/s12035-024-04408-w","url":null,"abstract":"<p><p>Though spinal cord injury (SCI) causes irreversible sensory and motor impairments in human, adult zebrafish retain the potent regenerative capacity by injury-induced proliferation of central nervous system (CNS)-resident progenitor cells to develop new functional neurons at the lesion site. The hallmark of SCI in zebrafish lies in a series of changes in the epigenetic landscape, specifically DNA methylation and histone modifications. Decoding the post-SCI epigenetic modifications is therefore critical for the development of therapeutic remedies that boost SCI recovery process. Here, we have studied on Sirtuin1 (Sirt1), a non-classical histone deacetylase that potentially plays a critical role in neural progenitor cells (NPC) proliferation and axonal regrowth following SCI in zebrafish. We investigated the role of Sirt1 in NPC proliferation and axonal regrowth in response to injury in the regenerating spinal cord and found that Sirt1 is involved in the induction of NPC proliferation along with glial bridging during spinal cord regeneration. We also demonstrate that Sirt1 plays a pivotal role in regulating the HIPPO pathway through deacetylation-mediated inactivation of Dnmt1 and subsequent hypomethylation of yap1 promoter, leading to the induction of ctgfa expression, which drives the NPC proliferation and axonal regrowth to complete the regenerative process. In conclusion, our study reveals a novel cross-talk between two important epigenetic effectors, Sirt1 and Dnmt1, in the context of spinal cord regeneration, establishing a previously undisclosed relation between Sirt1 and Yap1 which provides a deeper understanding of the underlying mechanisms governing injury-induced NPC proliferation and axonal regrowth. Therefore, we have identified Sirt1 as a novel, major epigenetic regulator of spinal cord regeneration by modulating the HIPPO pathway in zebrafish.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"2396-2419"},"PeriodicalIF":4.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular NeurobiologyPub Date : 2025-02-01Epub Date: 2024-07-15DOI: 10.1007/s12035-024-04351-w
Mohd Shahnawaz Khan, Zuber Khan, Nasimudeen R Jabir, Sidharth Mehan, Mohd Suhail, Syed Kashif Zaidi, Torki A Zughaibi, Mohammad Abid, Shams Tabrez
{"title":"Synthesis and Neurobehavioral Evaluation of a Potent Multitargeted Inhibitor for the Treatment of Alzheimer's Disease.","authors":"Mohd Shahnawaz Khan, Zuber Khan, Nasimudeen R Jabir, Sidharth Mehan, Mohd Suhail, Syed Kashif Zaidi, Torki A Zughaibi, Mohammad Abid, Shams Tabrez","doi":"10.1007/s12035-024-04351-w","DOIUrl":"10.1007/s12035-024-04351-w","url":null,"abstract":"<p><p>Alzheimer's disease (AD) poses a significant health challenge worldwide, affecting millions of individuals, and projected to increase further as the global population ages. Current pharmacological interventions primarily target acetylcholine deficiency and amyloid plaque formation, but offer limited efficacy and are often associated with adverse effects. Given the multifactorial nature of AD, there is a critical need for novel therapeutic approaches that simultaneously target multiple pathological pathways. Targeting key enzymes involved in AD pathophysiology, such as acetylcholinesterase, butyrylcholinesterase, beta-site APP cleaving enzyme 1 (BACE1), and gamma-secretase, is a potential strategy to mitigate disease progression. To this end, our research group has conducted comprehensive in silico screening to identify some lead compounds, including IQ6 (SSZ), capable of simultaneously inhibiting the enzymes mentioned above. Building upon this foundation, we synthesized SSZ, a novel multitargeted ligand/inhibitor to address various pathological mechanisms underlying AD. Chemically, SSZ exhibits pharmacological properties conducive to AD treatment, featuring pyrrolopyridine and N-cyclohexyl groups. Preclinical experimental evaluation of SSZ in AD rat model showed promising results, with notable improvements in behavioral and cognitive parameters. Specifically, SSZ treatment enhanced locomotor activity, ameliorated gait abnormalities, and improved cognitive function compared to untreated AD rats. Furthermore, brain morphological analysis demonstrated the neuroprotective effects of SSZ, attenuating Aβ-induced neuronal damage and preserving brain morphology. Combined treatment of SSZ and conventional drugs (DON and MEM) showed synergistic effects, suggesting a potential therapeutic strategy for AD management. Overall, our study highlights the efficacy of multitargeted ligands like SSZ in combating AD by addressing the complex etiology of the disease. Further research is needed to elucidate the full therapeutic potential of SSZ and the exploration of similar compounds in clinical settings, offering hope for an effective AD treatment in the future.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"1558-1576"},"PeriodicalIF":4.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular NeurobiologyPub Date : 2025-02-01Epub Date: 2024-08-01DOI: 10.1007/s12035-024-04361-8
Zhaojun Liu, Jianping Jia
{"title":"Omaveloxolone Ameliorates Cognitive Deficits by Inhibiting Apoptosis and Neuroinflammation in APP/PS1 Mice.","authors":"Zhaojun Liu, Jianping Jia","doi":"10.1007/s12035-024-04361-8","DOIUrl":"10.1007/s12035-024-04361-8","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most prevalent neurodegenerative disease associated with aging, characterized by progressive cognitive impairment and memory loss. However, treatments that delay AD progression or improve its symptoms remain limited. The aim of the present study was to investigate the therapeutic effects of omaveloxolone (Omav) on AD and to explore the underlying mechanisms. Thirty-week-old APP/PS1 mice were selected as an experimental model of AD. The spatial learning and memory abilities were tested using the Morris water maze. Amyloid-beta (Aβ) deposition in the brains was measured using immunohistochemistry. Network pharmacological analyses and molecular docking were conducted to gain insights into the therapeutic mechanisms of Omav. Finally, validation analyses were conducted to detect changes in the associated pathways and proteins. Our finding revealed that Omav markedly rescued cognitive dysfunction and reduced Aβ deposition in the brains of APP/PS1 mice. Network pharmacological analysis identified 112 intersecting genes, with CASP3 and MTOR emerging as the key targets. In vivo validation experiments indicated that Omav attenuated neuronal apoptosis by regulating apoptotic proteins, including caspase 3, Bax, and Bcl-2. Moreover, Omav suppressed neuroinflammation and induced autophagy by inhibiting the phosphorylation of mTOR. These findings highlight the therapeutic efficacy of Omav in AD and that its neuroprotective effects were associated with inhibiting neuronal apoptosis and regulating neuroinflammation.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"2191-2202"},"PeriodicalIF":4.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neurons Specialize in Presynaptic Autophagy: A Perspective to Ameliorate Neurodegeneration.","authors":"Abhishek Kumar Mishra, Manish Kumar Tripathi, Dipak Kumar, Satya Prakash Gupta","doi":"10.1007/s12035-024-04399-8","DOIUrl":"10.1007/s12035-024-04399-8","url":null,"abstract":"<p><p>The efficient and prolonged neurotransmission is reliant on the coordinated action of numerous synaptic proteins in the presynaptic compartment that remodels synaptic vesicles for neurotransmitter packaging and facilitates their exocytosis. Once a cycle of neurotransmission is completed, membranes and associated proteins are endocytosed into the cytoplasm for recycling or degradation. Both exocytosis and endocytosis are closely regulated in a timely and spatially constrained manner. Recent research demonstrated the impact of dysfunctional synaptic vesicle retrieval in causing retrograde degeneration of midbrain neurons and has highlighted the importance of such endocytic proteins, including auxilin, synaptojanin1 (SJ1), and endophilin A (EndoA) in neurodegenerative diseases. Additionally, the role of other associated proteins, including leucine-rich repeat kinase 2 (LRRK2), adaptor proteins, and retromer proteins, is being investigated for their roles in regulating synaptic vesicle recycling. Research suggests that the degradation of defective vesicles via presynaptic autophagy, followed by their recycling, not only revitalizes them in the active zone but also contributes to strengthening synaptic plasticity. The presynaptic autophagy rejuvenating terminals and maintaining neuroplasticity is unique in autophagosome formation. It involves several synaptic proteins to support autophagosome construction in tiny compartments and their retrograde trafficking toward the cell bodies. Despite having a comprehensive understanding of ATG proteins in autophagy, we still lack a framework to explain how autophagy is triggered and potentiated in compact presynaptic compartments. Here, we reviewed synaptic proteins' involvement in forming presynaptic autophagosomes and in retrograde trafficking of terminal cargos. The review also discusses the status of endocytic proteins and endocytosis-regulating proteins in neurodegenerative diseases and strategies to combat neurodegeneration.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"2626-2640"},"PeriodicalIF":4.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Systematic Mendelian Randomization Exploring Druggable Genes for Hemorrhagic Strokes.","authors":"Lun-Zhe Yang, Yong Yang, Chuan Hong, Qi-Zhe Wu, Xiong-Jie Shi, Yi-Lin Liu, Guang-Zhong Chen","doi":"10.1007/s12035-024-04336-9","DOIUrl":"10.1007/s12035-024-04336-9","url":null,"abstract":"<p><p>Patients with hemorrhagic stroke have high rates of morbidity and mortality, and drugs for prevention are very limited. Mendelian randomization (MR) analysis can increase the success rate of drug development by providing genetic evidence. Previous MR analyses only analyzed the role of individual drug target genes in hemorrhagic stroke; therefore, we used MR analysis to systematically explore the druggable genes for hemorrhagic stroke. We sequentially performed summary-data-based MR analysis and two-sample MR analysis to assess the associations of all genes within the database with intracranial aneurysm, intracerebral hemorrhage, and their subtypes. Validated genes were further analyzed by colocalization. Only genes that were positive in all three analyses and were druggable were considered desirable genes. We also explored the mediators of genes affecting hemorrhagic stroke incidence. Finally, the associations of druggable genes with other cardiovascular diseases were analyzed to assess potential side effects. We identified 56 genes that significantly affected hemorrhagic stroke incidence. Moreover, TNFSF12, SLC22A4, SPARC, KL, RELT, and ADORA3 were found to be druggable. The inhibition of TNFSF12, SLC22A4, and SPARC can reduce the risk of intracranial aneurysm, subarachnoid hemorrhage, and intracerebral hemorrhage. Gene-induced hypertension may be a potential mechanism by which these genes cause hemorrhagic stroke. We also found that blocking these genes may cause side effects, such as ischemic stroke and its subtypes. Our study revealed that six druggable genes were associated with hemorrhagic stroke, and the inhibition of TNFSF12, SLC22A4, and SPARC had preventive effects against hemorrhagic strokes.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"1359-1372"},"PeriodicalIF":4.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular NeurobiologyPub Date : 2025-02-01Epub Date: 2024-07-22DOI: 10.1007/s12035-024-04360-9
Jeferson Jantsch, Fernanda da Silva Rodrigues, Victor Silva Dias, Gabriel de Farias Fraga, Sarah Eller, Márcia Giovenardi, Renata Padilha Guedes
{"title":"Calorie Restriction Attenuates Memory Impairment and Reduces Neuroinflammation in Obese Aged Rats.","authors":"Jeferson Jantsch, Fernanda da Silva Rodrigues, Victor Silva Dias, Gabriel de Farias Fraga, Sarah Eller, Márcia Giovenardi, Renata Padilha Guedes","doi":"10.1007/s12035-024-04360-9","DOIUrl":"10.1007/s12035-024-04360-9","url":null,"abstract":"<p><p>Obesity and aging collectively potentiate inflammatory responses, particularly within the central nervous system. Managing obesity presents a significant challenge, even more so considering the context of aging. Caloric restriction (CR) has been extensively documented in the literature for its multiple health benefits. Motivated by these findings, we hypothesized that CR could serve as a valuable intervention to address the brain alterations and cognitive decline associated with obesity in aged rats. Our investigation revealed that cafeteria diet increased hippocampal and hypothalamic transcripts related to neuroinflammation, along with cognitive deficits determined in the object recognition test in 18-month-old male rats. Western blot data indicate that the obesogenic diet may disrupt the blood-brain barrier and lead to an increase in Toll-like receptor 4 in the hippocampus, events that could contribute to the cognitive deficits observed. Implementing CR after the onset of obesity mitigated neuroinflammatory changes and cognitive impairments. We found that CR increases GABA levels in the hippocampus of aged animals, as demonstrated by liquid chromatography coupled with mass spectrometry analysis. These findings underscore the potential of CR as a therapeutic opportunity to ameliorate the neuroinflammatory and cognitive alterations of obesity, especially in the context of aging.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"1788-1799"},"PeriodicalIF":4.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}