Eyyüp Sabri Özden, Mustafa Soner Özcan, Mehtap Savran, Ilter Ilhan, Muhammet Yusuf Tepebası, Mehmet Abdulkadir Sevuk, Özlem Özmen
{"title":"Effects of Tasimelteon Treatment on Traumatic Brain Injury Through NRF-2/HO-1 and RIPK1/RIPK3/MLKL Pathways in Rats.","authors":"Eyyüp Sabri Özden, Mustafa Soner Özcan, Mehtap Savran, Ilter Ilhan, Muhammet Yusuf Tepebası, Mehmet Abdulkadir Sevuk, Özlem Özmen","doi":"10.1007/s12035-025-04711-0","DOIUrl":null,"url":null,"abstract":"<p><p>Secondary brain damageafter traumatic brain injury (TBI) involves oxidative stress, neuroinflammation, apoptosis, and necroptosis and can be reversed by understanding these molecular pathways. The objective of this study was to examine the impact of tasimelteon (Tasi) administration on brain injury through the nuclear factor erythroid 2-related factor 2 (NRF-2)/heme oxygenase-1 (HO-1) and receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) pathways in rats with TBI. Thirty-two male Wistar albino rats weighing 300-350 g were randomly divided into four groups: the control group, trauma group, Tasi-1 group (trauma + 1 mg/kg Tasi intraperitoneally), and Tasi-10 group (trauma + 10 mg/kg Tasi intraperitoneally). At the end of the experimental phase, after sacrifice, blood samples and brain tissue were collected for biochemical, histopathological, immunohistochemical, and genetic analyses. Tasi increased the total antioxidant status and decreased the total oxidant status and oxidative stress index. In addition, Tasi caused histopathological changes characterized by a markedly reduced hemorrhage area in the Tasi-1 group. Normal brain and meningeal structure was observed in rats in the Tasi-10 group. Immunohistochemical analysis indicated that Tasi also decreased the expression of interferon-gamma, caspase-3, and tumor necrosis factor-alpha in the brain tissue. Although NRF-2 and HO-1 expression decreased, RIPK1/RIPK3/MLKL gene expression increased due to trauma. However, Tasi treatment reversed all these findings. Tasi protected against brain injury through the NRF-2/HO-1 and RIPK1/RIPK3/MLKL pathways in rats with TBI.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"12383-12392"},"PeriodicalIF":4.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12433330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04711-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Secondary brain damageafter traumatic brain injury (TBI) involves oxidative stress, neuroinflammation, apoptosis, and necroptosis and can be reversed by understanding these molecular pathways. The objective of this study was to examine the impact of tasimelteon (Tasi) administration on brain injury through the nuclear factor erythroid 2-related factor 2 (NRF-2)/heme oxygenase-1 (HO-1) and receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) pathways in rats with TBI. Thirty-two male Wistar albino rats weighing 300-350 g were randomly divided into four groups: the control group, trauma group, Tasi-1 group (trauma + 1 mg/kg Tasi intraperitoneally), and Tasi-10 group (trauma + 10 mg/kg Tasi intraperitoneally). At the end of the experimental phase, after sacrifice, blood samples and brain tissue were collected for biochemical, histopathological, immunohistochemical, and genetic analyses. Tasi increased the total antioxidant status and decreased the total oxidant status and oxidative stress index. In addition, Tasi caused histopathological changes characterized by a markedly reduced hemorrhage area in the Tasi-1 group. Normal brain and meningeal structure was observed in rats in the Tasi-10 group. Immunohistochemical analysis indicated that Tasi also decreased the expression of interferon-gamma, caspase-3, and tumor necrosis factor-alpha in the brain tissue. Although NRF-2 and HO-1 expression decreased, RIPK1/RIPK3/MLKL gene expression increased due to trauma. However, Tasi treatment reversed all these findings. Tasi protected against brain injury through the NRF-2/HO-1 and RIPK1/RIPK3/MLKL pathways in rats with TBI.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.