利用阿尔茨海默病组学鉴定原发性开角型青光眼神经退行性变的多效基因

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Paulina Tolosa-Tort, Andrew T DeWan
{"title":"利用阿尔茨海默病组学鉴定原发性开角型青光眼神经退行性变的多效基因","authors":"Paulina Tolosa-Tort, Andrew T DeWan","doi":"10.1007/s12035-025-05074-2","DOIUrl":null,"url":null,"abstract":"<p><p>Primary open-angle glaucoma is the most common form of glaucoma worldwide and one of the leading causes of irreversible blindness. Current therapies focus on intraocular pressure control despite substantial evidence on the importance of additional pathogenic mechanisms involved in neuronal repair and regeneration. Some of these mechanisms may be shared with and across other neurodegenerative disorders, such as Alzheimer's disease. Joint analyses that address this pathogenic overlap can be leveraged to identify suspected neurodegenerative and neuroprotective pathways. In this study, we derived gene-level summary statistics from available genome-wide association studies for primary open-angle glaucoma and Alzheimer's Disease and employed a multivariate analysis to identify genes with an effect on both neurodegenerative diseases. We assessed the influence of the prioritized genes using Mendelian randomization to obtain the effect of retina- and brain cortex-specific gene expression on primary open-angle glaucoma risk. We identified ten genes with evidence of a pleiotropic effect on primary open-angle glaucoma and Alzheimer's disease: TMCO1, ANXA11, ARHGAP27, PLEKHM1, CRHR1, KANSL1, LRRC37A, ARL17A, LRRC37A2, and CBY1. Additionally, gene expression in either the retina or brain cortex of TMCO1, ANXA11, ARHGAP27, PLEKHM1, KANSL1, LRRC37A, ARL17A, LRRC37A2, and CBY1 influenced POAG risk. These genes have known roles in neurodegeneration-associated pathways. Our analysis uncovered evidence of pleiotropy and gene expression as a mechanism impacting disease risk. Further investigation into these genes may yield valuable insights into their involvement in neurodegenerative pathways potentially informing new approaches for early detection, classification, and treatment strategies.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Alzheimer's Disease Omics to Identify Pleiotropic Genes Contributing to Neurodegeneration in Primary Open-Angle Glaucoma.\",\"authors\":\"Paulina Tolosa-Tort, Andrew T DeWan\",\"doi\":\"10.1007/s12035-025-05074-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Primary open-angle glaucoma is the most common form of glaucoma worldwide and one of the leading causes of irreversible blindness. Current therapies focus on intraocular pressure control despite substantial evidence on the importance of additional pathogenic mechanisms involved in neuronal repair and regeneration. Some of these mechanisms may be shared with and across other neurodegenerative disorders, such as Alzheimer's disease. Joint analyses that address this pathogenic overlap can be leveraged to identify suspected neurodegenerative and neuroprotective pathways. In this study, we derived gene-level summary statistics from available genome-wide association studies for primary open-angle glaucoma and Alzheimer's Disease and employed a multivariate analysis to identify genes with an effect on both neurodegenerative diseases. We assessed the influence of the prioritized genes using Mendelian randomization to obtain the effect of retina- and brain cortex-specific gene expression on primary open-angle glaucoma risk. We identified ten genes with evidence of a pleiotropic effect on primary open-angle glaucoma and Alzheimer's disease: TMCO1, ANXA11, ARHGAP27, PLEKHM1, CRHR1, KANSL1, LRRC37A, ARL17A, LRRC37A2, and CBY1. Additionally, gene expression in either the retina or brain cortex of TMCO1, ANXA11, ARHGAP27, PLEKHM1, KANSL1, LRRC37A, ARL17A, LRRC37A2, and CBY1 influenced POAG risk. These genes have known roles in neurodegeneration-associated pathways. Our analysis uncovered evidence of pleiotropy and gene expression as a mechanism impacting disease risk. Further investigation into these genes may yield valuable insights into their involvement in neurodegenerative pathways potentially informing new approaches for early detection, classification, and treatment strategies.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-05074-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-05074-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

原发性开角型青光眼是世界上最常见的青光眼,也是导致不可逆失明的主要原因之一。目前的治疗集中在眼压控制上,尽管有大量证据表明其他致病机制在神经元修复和再生中的重要性。其中一些机制可能与其他神经退行性疾病(如阿尔茨海默病)共享。解决这种致病重叠的联合分析可以用来识别可疑的神经退行性和神经保护途径。在这项研究中,我们从现有的原发性开角型青光眼和阿尔茨海默病的全基因组关联研究中获得基因水平的汇总统计数据,并采用多变量分析来确定对这两种神经退行性疾病有影响的基因。我们使用孟德尔随机化方法评估了优先基因的影响,以获得视网膜和大脑皮层特异性基因表达对原发性开角型青光眼风险的影响。我们鉴定出10个基因在原发性开角型青光眼和阿尔茨海默病中具有多效性作用:TMCO1、ANXA11、ARHGAP27、PLEKHM1、CRHR1、KANSL1、LRRC37A、ARL17A、LRRC37A2和CBY1。此外,视网膜或大脑皮层中TMCO1、ANXA11、ARHGAP27、PLEKHM1、KANSL1、LRRC37A、ARL17A、LRRC37A2和CBY1的基因表达影响POAG的风险。这些基因在神经退行性相关通路中起着已知的作用。我们的分析揭示了多效性和基因表达作为影响疾病风险的机制的证据。对这些基因的进一步研究可能会对它们参与神经退行性通路产生有价值的见解,可能会为早期检测、分类和治疗策略提供新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Alzheimer's Disease Omics to Identify Pleiotropic Genes Contributing to Neurodegeneration in Primary Open-Angle Glaucoma.

Primary open-angle glaucoma is the most common form of glaucoma worldwide and one of the leading causes of irreversible blindness. Current therapies focus on intraocular pressure control despite substantial evidence on the importance of additional pathogenic mechanisms involved in neuronal repair and regeneration. Some of these mechanisms may be shared with and across other neurodegenerative disorders, such as Alzheimer's disease. Joint analyses that address this pathogenic overlap can be leveraged to identify suspected neurodegenerative and neuroprotective pathways. In this study, we derived gene-level summary statistics from available genome-wide association studies for primary open-angle glaucoma and Alzheimer's Disease and employed a multivariate analysis to identify genes with an effect on both neurodegenerative diseases. We assessed the influence of the prioritized genes using Mendelian randomization to obtain the effect of retina- and brain cortex-specific gene expression on primary open-angle glaucoma risk. We identified ten genes with evidence of a pleiotropic effect on primary open-angle glaucoma and Alzheimer's disease: TMCO1, ANXA11, ARHGAP27, PLEKHM1, CRHR1, KANSL1, LRRC37A, ARL17A, LRRC37A2, and CBY1. Additionally, gene expression in either the retina or brain cortex of TMCO1, ANXA11, ARHGAP27, PLEKHM1, KANSL1, LRRC37A, ARL17A, LRRC37A2, and CBY1 influenced POAG risk. These genes have known roles in neurodegeneration-associated pathways. Our analysis uncovered evidence of pleiotropy and gene expression as a mechanism impacting disease risk. Further investigation into these genes may yield valuable insights into their involvement in neurodegenerative pathways potentially informing new approaches for early detection, classification, and treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信