Molecular & Cellular Proteomics最新文献

筛选
英文 中文
NovoBoard: A Comprehensive Framework for Evaluating the False Discovery Rate and Accuracy of De Novo Peptide Sequencing. NovoBoard:评估全新多肽测序的错误发现率和准确性的综合框架。
IF 6.1 2区 生物学
Molecular & Cellular Proteomics Pub Date : 2024-09-24 DOI: 10.1016/j.mcpro.2024.100849
Ngoc Hieu Tran, Rui Qiao, Zeping Mao, Shengying Pan, Qing Zhang, Wenting Li, Lei Xin, Ming Li, Baozhen Shan
{"title":"NovoBoard: A Comprehensive Framework for Evaluating the False Discovery Rate and Accuracy of De Novo Peptide Sequencing.","authors":"Ngoc Hieu Tran, Rui Qiao, Zeping Mao, Shengying Pan, Qing Zhang, Wenting Li, Lei Xin, Ming Li, Baozhen Shan","doi":"10.1016/j.mcpro.2024.100849","DOIUrl":"10.1016/j.mcpro.2024.100849","url":null,"abstract":"<p><p>De novo peptide sequencing is one of the most fundamental research areas in mass spectrometry-based proteomics. Many methods have often been evaluated using a couple of simple metrics that do not fully reflect their overall performance. Moreover, there has not been an established method to estimate the false discovery rate (FDR) of de novo peptide-spectrum matches. Here we propose NovoBoard, a comprehensive framework to evaluate the performance of de novo peptide-sequencing methods. The framework consists of diverse benchmark datasets (including tryptic, nontryptic, immunopeptidomics, and different species) and a standard set of accuracy metrics to evaluate the fragment ions, amino acids, and peptides of the de novo results. More importantly, a new approach is designed to evaluate de novo peptide-sequencing methods on target-decoy spectra and to estimate and validate their FDRs. Our FDR estimation provides valuable information to assess the reliability of new peptides identified by de novo sequencing tools, especially when no ground-truth information is available to evaluate their accuracy. The FDR estimation can also be used to evaluate the capability of de novo peptide sequencing tools to distinguish between de novo peptide-spectrum matches and random matches. Our results thoroughly reveal the strengths and weaknesses of different de novo peptide-sequencing methods and how their performances depend on specific applications and the types of data.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100849"},"PeriodicalIF":6.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive Proteomic Analysis Reveals Distinct Features and a Diagnostic Biomarker Panel for Early Pregnancy Loss in Histological Subtypes. 全面的蛋白质组分析揭示了组织学亚型中早期妊娠丢失的不同特征和诊断生物标记物面板。
IF 6.1 2区 生物学
Molecular & Cellular Proteomics Pub Date : 2024-09-24 DOI: 10.1016/j.mcpro.2024.100848
Yating Zhao, Yingjiqiong Liang, Luya Cai, Limeng Cai, Bo Huang, Peilin Han, Xiaofei Zhang, Huifang Zhang, Zhen Chen, Xiangang Yin, Ping Duan, Huafeng Shou, Xiaoxu Zhu, Zhe Wang, Qihong Wan, Jinyan Huang, Jianhua Qian
{"title":"Comprehensive Proteomic Analysis Reveals Distinct Features and a Diagnostic Biomarker Panel for Early Pregnancy Loss in Histological Subtypes.","authors":"Yating Zhao, Yingjiqiong Liang, Luya Cai, Limeng Cai, Bo Huang, Peilin Han, Xiaofei Zhang, Huifang Zhang, Zhen Chen, Xiangang Yin, Ping Duan, Huafeng Shou, Xiaoxu Zhu, Zhe Wang, Qihong Wan, Jinyan Huang, Jianhua Qian","doi":"10.1016/j.mcpro.2024.100848","DOIUrl":"10.1016/j.mcpro.2024.100848","url":null,"abstract":"<p><p>Early pregnancy loss (EPL) is a common event in human reproduction and is classified into histological subtypes such as hydropic abortion (HA) and hydatidiform moles, including complete hydatidiform moles (CHMs) and partial hydatidiform moles (PHMs). However, accurate diagnosis and improved patient management remain challenging due to high rates of misdiagnosis and diverse prognostic risks. Therefore, diagnostic biomarkers for EPL are urgently needed. Our study aimed to identify biomarkers for EPL through comprehensive proteomic analysis. Ten CHMs, six PHMs, ten HAs, and 10 normal control products of conception were used to obtain a proteomic portrait. Parallel reaction monitoring-targeted proteomic and regression analyses were used to verify and select the diagnostic signatures. Finally, 14 proteins were selected and a panel of diagnostic classifiers (DLK1, SPTB/COL21A1, and SAR1A) was built to represent the CHM, PHM, and normal control groups (area under the receiver operating characteristic curve = 0.900, 0.804/0.885, and 0.991, respectively). This high diagnostic power was further validated in another independent cohort (n = 148) by immunohistochemistry (n = 120) and Western blot analyses (n = 28). The protein SPTB was selected for further biological behavior experiments in vitro. Our data suggest that SPTB maintains trophoblast cell proliferation, angiogenesis, cell motility, and the cytoskeleton network. This study provides a comprehensive proteomic portrait and identifies potential diagnostic biomarkers. These findings enhance our understanding of EPL pathogenesis and offer novel targets for diagnosis and therapeutic interventions.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100848"},"PeriodicalIF":6.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks. 光照变化会促进质体蛋白乙酰化标记的不同反应。
IF 6.1 2区 生物学
Molecular & Cellular Proteomics Pub Date : 2024-09-24 DOI: 10.1016/j.mcpro.2024.100845
Jürgen Eirich, Jean-Baptiste Boyer, Laura Armbruster, Aiste Ivanauskaite, Carolina De La Torre, Thierry Meinnel, Markus Wirtz, Paula Mulo, Iris Finkemeier, Carmela Giglione
{"title":"Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks.","authors":"Jürgen Eirich, Jean-Baptiste Boyer, Laura Armbruster, Aiste Ivanauskaite, Carolina De La Torre, Thierry Meinnel, Markus Wirtz, Paula Mulo, Iris Finkemeier, Carmela Giglione","doi":"10.1016/j.mcpro.2024.100845","DOIUrl":"10.1016/j.mcpro.2024.100845","url":null,"abstract":"<p><p>Protein acetylation is a key co- and post-translational modification. However, how different types of acetylation respond to environmental stress is still unknown. To address this, we investigated the role of a member of the newly discovered family of plastid acetyltransferases (GNAT2), which features both lysine- and N-terminal acetyltransferase activities. Our study aimed to provide a holistic multi-omics acetylation-dependent view of plant acclimation to short-term light changes. We found that both the yield and coverage of the N-terminal acetylome remained unchanged in WT and gnat2-KO backgrounds after 2 h of exposure to high light or darkness. Similarly, no differences in transcriptome or adenylate energy charge were observed between the genotypes under the tested light conditions. In contrast, the lysine acetylome proved to be sensitive to the changes in light conditions, especially in the gnat2 background. This suggests unique strategies of plant acclimation for quick responses to environmental changes involving lysine, but not N-terminal, GNAT2-mediated acetylation activity.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100845"},"PeriodicalIF":6.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights Into Glycobiology and the Protein-Glycan Interactome Using Glycan Microarray Technologies. 利用聚糖芯片技术深入了解糖生物学和蛋白质-聚糖相互作用组。
IF 6.1 2区 生物学
Molecular & Cellular Proteomics Pub Date : 2024-09-21 DOI: 10.1016/j.mcpro.2024.100844
Jamie Heimburg-Molinaro, Akul Y Mehta, Catherine A Tilton, Richard D Cummings
{"title":"Insights Into Glycobiology and the Protein-Glycan Interactome Using Glycan Microarray Technologies.","authors":"Jamie Heimburg-Molinaro, Akul Y Mehta, Catherine A Tilton, Richard D Cummings","doi":"10.1016/j.mcpro.2024.100844","DOIUrl":"10.1016/j.mcpro.2024.100844","url":null,"abstract":"<p><p>Glycans linked to proteins and lipids and also occurring in free forms have many functions, and these are partly elicited through specific interactions with glycan-binding proteins (GBPs). These include lectins, adhesins, toxins, hemagglutinins, growth factors, and enzymes, but antibodies can also bind glycans. While humans and other animals generate a vast repertoire of GBPs and different glycans in their glycomes, other organisms, including phage, microbes, protozoans, fungi, and plants also express glycans and GBPs, and these can also interact with their host glycans. This can be termed the protein-glycan interactome, and in nature is likely to be vast, but is so far very poorly described. Understanding the breadth of the protein-glycan interactome is also a key to unlocking our understanding of infectious diseases involving glycans, and immunology associated with antibodies binding to glycans. A key technological advance in this area has been the development of glycan microarrays. This is a display technology in which minute quantities of glycans are attached to the surfaces of slides or beads. This allows the arrayed glycans to be interrogated by GBPs and antibodies in a relatively high throughput approach, in which a protein may bind to one or more distinct glycans. Such binding can lead to novel insights and hypotheses regarding both the function of the GBP, the specificity of an antibody and the function of the glycan within the context of the protein-glycan interactome. This article focuses on the types of glycan microarray technologies currently available to study animal glycobiology and examples of breakthroughs aided by these technologies.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100844"},"PeriodicalIF":6.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteome-Scale Tissue Mapping Using Mass Spectrometry Based on Label-Free and Multiplexed Workflows. 利用基于无标记和多路复用工作流程的质谱技术绘制蛋白质组规模的组织图谱。
IF 6.1 2区 生物学
Molecular & Cellular Proteomics Pub Date : 2024-09-20 DOI: 10.1016/j.mcpro.2024.100841
Yumi Kwon, Jongmin Woo, Fengchao Yu, Sarah M Williams, Lye Meng Markillie, Ronald J Moore, Ernesto S Nakayasu, Jing Chen, Martha Campbell-Thompson, Clayton E Mathews, Alexey I Nesvizhskii, Wei-Jun Qian, Ying Zhu
{"title":"Proteome-Scale Tissue Mapping Using Mass Spectrometry Based on Label-Free and Multiplexed Workflows.","authors":"Yumi Kwon, Jongmin Woo, Fengchao Yu, Sarah M Williams, Lye Meng Markillie, Ronald J Moore, Ernesto S Nakayasu, Jing Chen, Martha Campbell-Thompson, Clayton E Mathews, Alexey I Nesvizhskii, Wei-Jun Qian, Ying Zhu","doi":"10.1016/j.mcpro.2024.100841","DOIUrl":"10.1016/j.mcpro.2024.100841","url":null,"abstract":"<p><p>Multiplexed bimolecular profiling of tissue microenvironment, or spatial omics, can provide deep insight into cellular compositions and interactions in healthy and diseased tissues. Proteome-scale tissue mapping, which aims to unbiasedly visualize all the proteins in a whole tissue section or region of interest, has attracted significant interest because it holds great potential to directly reveal diagnostic biomarkers and therapeutic targets. While many approaches are available, however, proteome mapping still exhibits significant technical challenges in both protein coverage and analytical throughput. Since many of these existing challenges are associated with mass spectrometry-based protein identification and quantification, we performed a detailed benchmarking study of three protein quantification methods for spatial proteome mapping, including label-free, TMT-MS2, and TMT-MS3. Our study indicates label-free method provided the deepest coverages of ∼3500 proteins at a spatial resolution of 50 μm and the highest quantification dynamic range, while TMT-MS2 method holds great benefit in mapping throughput at >125 pixels per day. The evaluation also indicates both label-free and TMT-MS2 provides robust protein quantifications in identifying differentially abundant proteins and spatially covariable clusters. In the study of pancreatic islet microenvironment, we demonstrated deep proteome mapping not only enables the identification of protein markers specific to different cell types, but more importantly, it also reveals unknown or hidden protein patterns by spatial coexpression analysis.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100841"},"PeriodicalIF":6.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovations Toward Immunopeptidomics. 实现免疫肽组学的创新。
IF 6.1 2区 生物学
Molecular & Cellular Proteomics Pub Date : 2024-09-01 Epub Date: 2024-07-31 DOI: 10.1016/j.mcpro.2024.100823
Jennifer G Abelin, Andrea L Cox
{"title":"Innovations Toward Immunopeptidomics.","authors":"Jennifer G Abelin, Andrea L Cox","doi":"10.1016/j.mcpro.2024.100823","DOIUrl":"10.1016/j.mcpro.2024.100823","url":null,"abstract":"<p><p>Over the past 30 years, immunopeptidomics has grown alongside improvements in mass spectrometry technology, genomics, transcriptomics, T cell receptor sequencing, and immunological assays to identify and characterize the targets of activated T cells. Together, multiple research groups with expertise in immunology, biochemistry, chemistry, and peptide mass spectrometry have come together to enable the isolation and sequence identification of endogenous major histocompatibility complex (MHC)-bound peptides. The idea to apply highly sensitive mass spectrometry techniques to study the landscape of peptide antigens presented by cell surface MHCs was innovative and continues to be successfully used and improved upon to deepen our understanding of how peptide antigens are processed and presented to T cells. Multiple research groups were involved in this bringing immunopeptidomics to the forefront of translational research, and we will highlight the contributions of one of the earliest developers, Professor Donald F. Hunt, and his research group at the University of Virginia. The Hunt laboratory applied cutting edge mass spectroscopy-based immunopeptidomics to study cancer, autoimmunity, transplant rejection, and infectious diseases. Across these diverse research areas, the Hunt laboratory and collaborators would characterize previously unknown MHC peptide-binding motifs and identify immunologically active antigens using ultra sensitive mass spectrometry techniques. Amazingly, many of the MHC-bound peptide antigens discovered in collaborations with the Hunt laboratory were sequenced by mass spectrometry before the completion of the human genome using manual de novo sequencing. In this perspective article, we will chronicle the work of the Hunt laboratory and their many collaborators that would be a major part of the foundation for mass spectrometry-based immunopeptidomics and its application to immunology research.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100823"},"PeriodicalIF":6.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Proteogenomic Pipeline for the Analysis of Protein Biosynthesis Errors in the Human Pathogen Candida albicans. 用于分析人类病原体白色念珠菌蛋白质生物合成错误的蛋白质基因组学管道。
IF 6.1 2区 生物学
Molecular & Cellular Proteomics Pub Date : 2024-09-01 Epub Date: 2024-07-22 DOI: 10.1016/j.mcpro.2024.100818
Inês Correia, Carla Oliveira, Andreia Reis, Ana Rita Guimarães, Susana Aveiro, Pedro Domingues, Ana Rita Bezerra, Rui Vitorino, Gabriela Moura, Manuel A S Santos
{"title":"A Proteogenomic Pipeline for the Analysis of Protein Biosynthesis Errors in the Human Pathogen Candida albicans.","authors":"Inês Correia, Carla Oliveira, Andreia Reis, Ana Rita Guimarães, Susana Aveiro, Pedro Domingues, Ana Rita Bezerra, Rui Vitorino, Gabriela Moura, Manuel A S Santos","doi":"10.1016/j.mcpro.2024.100818","DOIUrl":"10.1016/j.mcpro.2024.100818","url":null,"abstract":"<p><p>Candida albicans is a diploid pathogen known for its ability to live as a commensal fungus in healthy individuals but causing both superficial infections and disseminated candidiasis in immunocompromised patients where it is associated with high morbidity and mortality. Its success in colonizing the human host is attributed to a wide range of virulence traits that modulate interactions between the host and the pathogen, such as optimal growth rate at 37 °C, the ability to switch between yeast and hyphal forms, and a remarkable genomic and phenotypic plasticity. A fascinating aspect of its biology is a prominent heterogeneous proteome that arises from frequent genomic rearrangements, high allelic variation, and high levels of amino acid misincorporations in proteins. This leads to increased morphological and physiological phenotypic diversity of high adaptive potential, but the scope of such protein mistranslation is poorly understood due to technical difficulties in detecting and quantifying amino acid misincorporation events in complex protein samples. We have developed and optimized mass spectrometry and bioinformatics pipelines capable of identifying rare amino acid misincorporation events at the proteome level. We have also analyzed the proteomic profile of an engineered C. albicans strain that exhibits high level of leucine misincorporation at protein CUG sites and employed an in vivo quantitative gain-of-function fluorescence reporter system to validate our LC-MS/MS data. C. albicans misincorporates amino acids above the background level at protein sites of diverse codons, particularly at CUG, confirming our previous data on the quantification of leucine incorporation at single CUG sites of recombinant reporter proteins, but increasing misincorporation of Leucine at these sites does not alter the translational fidelity of the other codons. These findings indicate that the C. albicans statistical proteome exceeds prior estimates, suggesting that its highly plastic phenome may also be modulated by environmental factors due to translational ambiguity.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100818"},"PeriodicalIF":6.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ST3GAL1 Promotes Malignant Phenotypes in Intrahepatic Cholangiocarcinoma. ST3GAL1 促进肝内胆管癌的恶性表型。
IF 6.1 2区 生物学
Molecular & Cellular Proteomics Pub Date : 2024-09-01 Epub Date: 2024-07-26 DOI: 10.1016/j.mcpro.2024.100821
Fanghua Chen, Ke Gao, Yan Li, Yin Li, Yingcheng Wu, Liangqing Dong, Zijian Yang, Jieyi Shi, Kun Guo, Qiang Gao, Haojie Lu, Shu Zhang
{"title":"ST3GAL1 Promotes Malignant Phenotypes in Intrahepatic Cholangiocarcinoma.","authors":"Fanghua Chen, Ke Gao, Yan Li, Yin Li, Yingcheng Wu, Liangqing Dong, Zijian Yang, Jieyi Shi, Kun Guo, Qiang Gao, Haojie Lu, Shu Zhang","doi":"10.1016/j.mcpro.2024.100821","DOIUrl":"10.1016/j.mcpro.2024.100821","url":null,"abstract":"<p><p>Intrahepatic cholangiocarcinoma (iCCA) has a poor prognosis, and elucidation of the molecular mechanisms underlying iCCA malignancy is of great significance. Glycosylation, an important post-translational modification, is closely associated with tumor progression. Altered glycosylation, including aberrant sialylation resulting from abnormal expression of sialyltransferases (STs) and neuraminidases (NEUs), is a significant feature of cancer cells. However, there is limited information on the roles of STs and NEUs in iCCA malignancy. Here, utilizing our proteogenomic resources from a cohort of 262 patients with iCCA, we identified ST3GAL1 as a prognostically relevant molecule in iCCA. Moreover, overexpression of ST3GAL1 promoted proliferation, migration, and invasion and inhibited apoptosis of iCCA cells in vitro. Through proteomic analyses, we identified the downstream pathway potentially regulated by ST3GAL1, which was the NF-κB signaling pathway, and further demonstrated that this pathway was positively correlated with malignancy in iCCA cells. Notably, glycoproteomics showed that O-glycosylation was changed in iCCA cells with high ST3GAL1 expression. Importantly, the altered O-glycopeptides underscored the potential utility of O-glycosylation profiling as a discriminatory marker for iCCA cells with ST3GAL1 overexpression. Additionally, miR-320b was identified as a post-transcriptional regulator of ST3GAL1, capable of suppressing ST3GAL1 expression and then reducing the proliferation, migration, and invasion abilities of iCCA cell lines. Taken together, these results suggest ST3GAL1 could serve as a promising therapeutic target for iCCA.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100821"},"PeriodicalIF":6.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic Proteome Profiling of Maternal Plasma for Development of Preeclampsia Biomarkers. 对母体血浆进行系统蛋白质组分析,以开发子痫前期生物标记物。
IF 6.1 2区 生物学
Molecular & Cellular Proteomics Pub Date : 2024-09-01 Epub Date: 2024-08-05 DOI: 10.1016/j.mcpro.2024.100826
Ji Hyae Lim, Jae Min Lim, Hyeong Min Lee, Hyun Jung Lee, Dong Wook Kwak, You Jung Han, Moon Young Kim, Sang Hee Jung, Young Ran Kim, Hyun Mee Ryu, Kwang Pyo Kim
{"title":"Systematic Proteome Profiling of Maternal Plasma for Development of Preeclampsia Biomarkers.","authors":"Ji Hyae Lim, Jae Min Lim, Hyeong Min Lee, Hyun Jung Lee, Dong Wook Kwak, You Jung Han, Moon Young Kim, Sang Hee Jung, Young Ran Kim, Hyun Mee Ryu, Kwang Pyo Kim","doi":"10.1016/j.mcpro.2024.100826","DOIUrl":"10.1016/j.mcpro.2024.100826","url":null,"abstract":"<p><p>Preeclampsia (PE) is a hypertensive disorder of pregnancy with various clinical symptoms. However, traditional markers for the disease including high blood pressure and proteinuria are poor indicators of the related adverse outcomes. Here, we performed systematic proteome profiling of plasma samples obtained from pregnant women with PE to identify clinically effective diagnostic biomarkers. Proteome profiling was performed using TMT-based liquid chromatography-mass spectrometry (LC-MS/MS) followed by subsequent verification by multiple reaction monitoring (MRM) analysis on normal and PE maternal plasma samples. Functional annotations of differentially expressed proteins (DEPs) in PE were predicted using bioinformatic tools. The diagnostic accuracies of the biomarkers for PE were estimated according to the area under the receiver-operating characteristics curve (AUC). A total of 1307 proteins were identified, and 870 proteins of them were quantified from plasma samples. Significant differences were evident in 138 DEPs, including 71 upregulated DEPs and 67 downregulated DEPs in the PE group, compared with those in the control group. Upregulated proteins were significantly associated with biological processes including platelet degranulation, proteolysis, lipoprotein metabolism, and cholesterol efflux. Biological processes including blood coagulation and acute-phase response were enriched for down-regulated proteins. Of these, 40 proteins were subsequently validated in an independent cohort of 26 PE patients and 29 healthy controls. APOM, LCN2, and QSOX1 showed high diagnostic accuracies for PE detection (AUC >0.9 and p < 0.001, for all) as validated by MRM and ELISA. Our data demonstrate that three plasma biomarkers, identified by systematic proteomic profiling, present a possibility for the assessment of PE, independent of the clinical characteristics of pregnant women.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100826"},"PeriodicalIF":6.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phage Immunoprecipitation and Sequencing-a Versatile Technique for Mapping the Antibody Reactome. 噬菌体免疫沉淀和测序--绘制抗体反应组图谱的多功能技术。
IF 6.1 2区 生物学
Molecular & Cellular Proteomics Pub Date : 2024-09-01 Epub Date: 2024-08-19 DOI: 10.1016/j.mcpro.2024.100831
Gustav N Sundell, Sheng-Ce Tao
{"title":"Phage Immunoprecipitation and Sequencing-a Versatile Technique for Mapping the Antibody Reactome.","authors":"Gustav N Sundell, Sheng-Ce Tao","doi":"10.1016/j.mcpro.2024.100831","DOIUrl":"10.1016/j.mcpro.2024.100831","url":null,"abstract":"<p><p>Characterizing the antibody reactome for circulating antibodies provide insight into pathogen exposure, allergies, and autoimmune diseases. This is important for biomarker discovery, clinical diagnosis, and prognosis of disease progression, as well as population-level insights into the immune system. The emerging technology phage display immunoprecipitation and sequencing (PhIP-seq) is a high-throughput method for identifying antigens/epitopes of the antibody reactome. In PhIP-seq, libraries with sequences of defined lengths and overlapping segments are bioinformatically designed using naturally occurring proteins and cloned into phage genomes to be displayed on the surface. These libraries are used in immunoprecipitation experiments of circulating antibodies. This can be done with parallel samples from multiple sources, and the DNA inserts from the bound phages are barcoded and subjected to next-generation sequencing for hit determination. PhIP-seq is a powerful technique for characterizing the antibody reactome that has undergone rapid advances in recent years. In this review, we comprehensively describe the history of PhIP-seq and discuss recent advances in library design and applications.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100831"},"PeriodicalIF":6.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信