Driving Therapeutic Innovation in Neurodegenerative Disease with Hydrogen Deuterium eXchange Mass Spectrometry.

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Andrea Pierangelini, Benedikt M Kessler, Darragh P O'Brien
{"title":"Driving Therapeutic Innovation in Neurodegenerative Disease with Hydrogen Deuterium eXchange Mass Spectrometry.","authors":"Andrea Pierangelini, Benedikt M Kessler, Darragh P O'Brien","doi":"10.1016/j.mcpro.2025.101017","DOIUrl":null,"url":null,"abstract":"<p><p>Human neurodegenerative conditions such as Parkinson's and Alzheimer's Disease are characterized by the formation and deposition of toxic protein species which exacerbate neuronal dysfunction, impacting the structure and function of the healthy brain. Deciphering the mechanisms underlying protein (mis)folding and aggregation is not only essential for a more coherent view of neurodegeneration, but also crucial for the development of novel therapeutics targeting this family of disorders. Key pathological drivers of neurodegeneration, such as alpha-synuclein and tau proteins, have traditionally proved extremely challenging to characterize structurally due to their intrinsic and widespread structural plasticity. Hydrogen-Deuterium eXchange Mass Spectrometry (HDX-MS) has emerged as a powerful tool to help circumvent this, owing to its ability to capture protein intrinsic disorder in solution, in addition to the transient structural conformations that typify protein aggregation pathways. This review brings together the most recent research where HDX-MS has shed light on mechanisms of neurodegeneration. We highlight how the technique has been successfully integrated into therapeutic development workflows targeting some of the most prevalent neurodegenerative diseases.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"101017"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.101017","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Human neurodegenerative conditions such as Parkinson's and Alzheimer's Disease are characterized by the formation and deposition of toxic protein species which exacerbate neuronal dysfunction, impacting the structure and function of the healthy brain. Deciphering the mechanisms underlying protein (mis)folding and aggregation is not only essential for a more coherent view of neurodegeneration, but also crucial for the development of novel therapeutics targeting this family of disorders. Key pathological drivers of neurodegeneration, such as alpha-synuclein and tau proteins, have traditionally proved extremely challenging to characterize structurally due to their intrinsic and widespread structural plasticity. Hydrogen-Deuterium eXchange Mass Spectrometry (HDX-MS) has emerged as a powerful tool to help circumvent this, owing to its ability to capture protein intrinsic disorder in solution, in addition to the transient structural conformations that typify protein aggregation pathways. This review brings together the most recent research where HDX-MS has shed light on mechanisms of neurodegeneration. We highlight how the technique has been successfully integrated into therapeutic development workflows targeting some of the most prevalent neurodegenerative diseases.

氢氘交换质谱技术推动神经退行性疾病治疗创新。
人类神经退行性疾病,如帕金森病和阿尔茨海默病,其特点是有毒蛋白质的形成和沉积加剧了神经元功能障碍,影响了健康大脑的结构和功能。破译蛋白质(错误)折叠和聚集的机制不仅对神经变性的更连贯的观点至关重要,而且对开发针对这一疾病家族的新疗法也至关重要。神经退行性变的关键病理驱动因素,如α -突触核蛋白和tau蛋白,由于其固有的和广泛的结构可塑性,传统上证明极具挑战性。氢-氘交换质谱(HDX-MS)已经成为一种强大的工具来帮助规避这一问题,因为它能够捕获蛋白质在溶液中的内在紊乱,以及蛋白质聚集途径的瞬时结构构象。这篇综述汇集了最新的研究,其中HDX-MS已经阐明了神经变性的机制。我们强调了该技术如何成功地整合到针对一些最普遍的神经退行性疾病的治疗开发工作流程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信