Keira E Mahoney, Larry Reser, Maria Virginia Ruiz Cuevas, Jennifer G Abelin, Jeffrey Shabanowitz, Donald F Hunt, Stacy A Malaker
{"title":"Identification of post-translationally modified MHC class I-associated peptides as potential cancer immunotherapeutic targets.","authors":"Keira E Mahoney, Larry Reser, Maria Virginia Ruiz Cuevas, Jennifer G Abelin, Jeffrey Shabanowitz, Donald F Hunt, Stacy A Malaker","doi":"10.1016/j.mcpro.2025.100971","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past three decades, the Hunt laboratory has developed advancements in mass spectrometry-based technologies to enable the identification of peptides bound to major histocompatibility complex (MHC) molecules. The MHC class I processing pathway is responsible for presenting these peptides to circulating cytotoxic T cells, allowing them to recognize and eliminate malignant cells, many of which have aberrant signaling. Professor Hunt hypothesized that due to the dysregulation in phosphorylation in cancer, that abnormal phosphopeptides are likely presented by this pathway, and went on to discover the first phosphopeptide presented by the MHC processing pathway. Thereafter, the laboratory continued to sequence MHC-associated phosphopeptides and contributed several improved methods for their enrichment, detection, and sequencing. This manuscript summarizes the most recent advancements in identification of modified MHC-associated peptides and includes the cumulative list of phosphopeptides sequenced by the Hunt lab. Further, many other post-translational modifications (PTMs) were found to modify MHC peptides, including O-GlcNAcylation, methylation, and kynurenine; in total, we present here a list of 2,450 MHC-associated PTM peptides. Many of these were disease specific and found across several patients, thus highlighting their potential as cancer immunotherapy targets. We are sharing this list with the field in hopes that it might be used in investigating this potential. Overall, the Hunt lab's contributions have significantly advanced our understanding of antigen presentation and dysregulation of PTMs, supporting modern immunotherapy and vaccine development efforts.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100971"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100971","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past three decades, the Hunt laboratory has developed advancements in mass spectrometry-based technologies to enable the identification of peptides bound to major histocompatibility complex (MHC) molecules. The MHC class I processing pathway is responsible for presenting these peptides to circulating cytotoxic T cells, allowing them to recognize and eliminate malignant cells, many of which have aberrant signaling. Professor Hunt hypothesized that due to the dysregulation in phosphorylation in cancer, that abnormal phosphopeptides are likely presented by this pathway, and went on to discover the first phosphopeptide presented by the MHC processing pathway. Thereafter, the laboratory continued to sequence MHC-associated phosphopeptides and contributed several improved methods for their enrichment, detection, and sequencing. This manuscript summarizes the most recent advancements in identification of modified MHC-associated peptides and includes the cumulative list of phosphopeptides sequenced by the Hunt lab. Further, many other post-translational modifications (PTMs) were found to modify MHC peptides, including O-GlcNAcylation, methylation, and kynurenine; in total, we present here a list of 2,450 MHC-associated PTM peptides. Many of these were disease specific and found across several patients, thus highlighting their potential as cancer immunotherapy targets. We are sharing this list with the field in hopes that it might be used in investigating this potential. Overall, the Hunt lab's contributions have significantly advanced our understanding of antigen presentation and dysregulation of PTMs, supporting modern immunotherapy and vaccine development efforts.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes