Microbial drug resistance最新文献

筛选
英文 中文
Colorimetric Loop-Mediated Isothermal Amplification Assays Accurately Detect blaOXA-23-like and ISAba1 Genes from Acinetobacter baumannii in Pure Cultures and Spiked Human Sera. 比色环路介导等温扩增测定法可准确检测纯培养物和加标人类血清中鲍曼不动杆菌的 blaOXA-23-like 和 ISAba1 基因。
IF 2.3 4区 医学
Microbial drug resistance Pub Date : 2024-10-01 Epub Date: 2024-08-28 DOI: 10.1089/mdr.2024.0075
Mark B Carascal, Raul V Destura, Windell L Rivera
{"title":"Colorimetric Loop-Mediated Isothermal Amplification Assays Accurately Detect <i>bla</i><sub>OXA-23-like</sub> and <i>ISAba1</i> Genes from <i>Acinetobacter baumannii</i> in Pure Cultures and Spiked Human Sera.","authors":"Mark B Carascal, Raul V Destura, Windell L Rivera","doi":"10.1089/mdr.2024.0075","DOIUrl":"10.1089/mdr.2024.0075","url":null,"abstract":"<p><p>Carbapenem resistance in <i>Acinetobacter baumannii</i> is a critical global health threat attributed to transferrable carbapenemase genes. Carbapenemase genotyping using polymerase chain reaction (PCR) presents a challenge in resource-limited settings because of its technical requirements. This study designed new loop-mediated isothermal amplification (LAMP) primers using multiple sequence alignment-based workflows, validated the primer performance against multiple target variants <i>in silico</i>, and developed novel LAMP assays (LAntRN-OXA23 and LAntRN-ISAba1) to detect the transferable <i>bla</i><sub>OXA-23-like</sub> carbapenemase genes and <i>ISAba1</i> elements in pure cultures and <i>A. baumannii</i>-spiked serum samples. The designed LAMP primers bind to the conserved regions of their highly polymorphic targets, with their <i>in silico</i> performance comparable with other published primers. The <i>in vitro</i> LAMP assays (using 30 PCR-profiled <i>A. baumannii</i> and 10 standard multidrug-resistant gram-negative isolates) have 100% concordance with the PCR-positive clinical samples, limits of detection as low as 1 pg/µL (200 copies/µL), and specificities of 57.89-100%. Both assays produced positive results when testing DNA samples (extracted using a commercial kit) from <i>bla</i><sub>OXA-23-like</sub> and <i>ISAba1-bla</i><sub>OXA-51-like</sub> PCR-positive <i>A. baumannii</i>-spiked normal human sera (five set-ups per target). In summary, the LAMP assays accurately detected the target genes and have applications in infection management, control, and point-of-care testing in resource-limited healthcare settings.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"432-441"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the Chromosomally Located Metallo-β-Lactamase Genes blaIMP-45 and blaVIM-2 in a Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolate. 耐碳青霉烯类耐药铜绿假单胞菌临床菌株中位于染色体上的金属β-内酰胺酶基因 blaIMP-45 和 blaVIM-2 的特征。
IF 2.3 4区 医学
Microbial drug resistance Pub Date : 2024-10-01 Epub Date: 2024-09-05 DOI: 10.1089/mdr.2024.0059
Wei Ma, Jie Guo, Changzi Deng, Xiaochun Huang, Yukai Sun, Li Xu, Qin Qin
{"title":"Characterization of the Chromosomally Located Metallo-<i>β</i>-Lactamase Genes <i>bla</i><sub>IMP-45</sub> and <i>bla</i><sub>VIM-2</sub> in a Carbapenem-Resistant <i>Pseudomonas aeruginosa</i> Clinical Isolate.","authors":"Wei Ma, Jie Guo, Changzi Deng, Xiaochun Huang, Yukai Sun, Li Xu, Qin Qin","doi":"10.1089/mdr.2024.0059","DOIUrl":"10.1089/mdr.2024.0059","url":null,"abstract":"<p><p><b><i>Objective:</i></b> Characterization of the multidrug resistance (MDR) region in <i>P. aeruginosa</i> strain PA59 revealed the presence of antibiotic resistance genes, including <i>bla</i><sub>IMP-45</sub> and <i>bla</i><sub>VIM-2</sub>, within a complex genetic landscape of mobile genetic elements. <b><i>Methods:</i></b> Carbapenem-resistant <i>Pseudomonas aeruginosa</i> (CRPA) strains were isolated from Shanghai Changhai Hospital. Polymerase chain reaction (PCR) was used to detect the <i>β</i>-lactamase genes in the isolated strains. Strains carrying two or more genes were subjected to whole-genome sequencing (WGS) and in-depth bioinformatics analysis. <b><i>Results:</i></b> A total of 94 CRPA strains were isolated, among which PA59 was determined to carry <i>bla</i><sub>IMP-45</sub> and <i>bla</i><sub>VIM-2</sub> genes. Compared with single-gene positive or other <i>bla</i><sub>IMP</sub> and <i>bla</i><sub>VIM</sub> dual-gene positive strains reported, PA59 exhibited a broader range of drug resistance. We discovered a multidrug resistant (MDR)-related region composed of various mobile elements in the PA59 chromosome. This region carried many resistance genes, including the target genes <i>bla</i><sub>IMP-45</sub> and <i>bla</i><sub>VIM-2</sub>. By further comparing the mobile elements GI13 and Ph08, we speculated that this integron structure carrying <i>bla</i><sub>IMP-45</sub> and <i>bla</i><sub>VIM-2</sub> was initially integrated into the genomic island or prophage, forming a more complex genetic structure, and then further integrated into the PA59 chromosome through plasmids. Phylogenetic tree analysis showed limited sequence similarity between PA59 and other CRPA strains. <b><i>Conclusions:</i></b> This study identified PA59 as the first reported <i>P. aeruginosa</i> strain carrying both <i>bla</i><sub>IMP-45</sub> and <i>bla</i><sub>VIM-2</sub> on the chromosome. The assembly and annotation of the PA59 genome provide valuable insights into the genomic diversity and gene content of this clinically important pathogen, aiding the development of effective strategies against antibiotic resistance.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"422-431"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Occurrence of blaOXA-116 Carbapenemase in Escherichia coli ST2519 of Clinical Origin: A Report from Northeast India. 临床来源大肠埃希菌 ST2519 中出现 blaOXA-116 碳青霉烯酶:来自印度东北部的报告。
IF 2.3 4区 医学
Microbial drug resistance Pub Date : 2024-10-01 Epub Date: 2024-08-30 DOI: 10.1089/mdr.2024.0022
Bhaskar Jyoti Das, K Melson Singha, Jayalaxmi Wangkheimayum, Debadatta Dhar Chanda, Amitabha Bhattacharjee
{"title":"Occurrence of <i>bla</i><sub>OXA-116</sub> Carbapenemase in <i>Escherichia coli</i> ST2519 of Clinical Origin: A Report from Northeast India.","authors":"Bhaskar Jyoti Das, K Melson Singha, Jayalaxmi Wangkheimayum, Debadatta Dhar Chanda, Amitabha Bhattacharjee","doi":"10.1089/mdr.2024.0022","DOIUrl":"10.1089/mdr.2024.0022","url":null,"abstract":"<p><p>Carbapenem-resistant <i>Escherichia coli</i> pose a significant threat to global public health due to the dearth of available treatment options, resulting in infections with high mortality and morbidity. The study aimed to investigate the mechanism of carbapenem resistance in a carbapenem non-susceptible <i>E. coli</i> isolate recovered from an urinary tract infection patient admitted to a tertiary referral hospital, through whole-genome sequencing using Illumina NovaSeq 6000 platform. Carbapenemase production followed by antibiotic susceptibility testing were performed following Clinical Laboratory Standard Institute guidelines. Polymerase chain reaction targeting carbapenemase genes was performed followed by an investigation of horizontal transferability. The Center for Genomic Epidemiology database was used to analyze the sequenced data. ST2519 <i>E. coli</i> BJD_EC1808 with a genome size of 5.8 Mb harbored Col440I plasmid and a chromosomally located <i>bla</i><sub>OXA-116</sub> gene with an IS18 element upstream, along with multiple antibiotic resistance genes conferring clinical resistance toward beta-lactams, aminoglycosides, amphenicols, sulfonamides, tetracyclines, trimethoprim, rifampin, macrolide, and streptogramin antibiotics and antiseptics. <i>E. coli</i> ST2519 harboring <i>bla</i><sub>OXA-116</sub> associated with a mobile genetic element exhibiting carbapenem resistance is a public health threat due to its limiting effect on the therapeutic usage of carbapenem and their dissemination into carbapenem non-susceptible phenotypes will contribute to carbapenem resistance burden and, therefore, warrants urgent monitoring and clinical intervention.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"399-406"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determining the Disinfectants Resistance Genes and the Susceptibility to Common Disinfectants of Extensively Drug-Resistant Carbapenem-Resistant Klebsiella pneumoniae Strains at a Tertiary Hospital in China. 中国某三甲医院广泛耐药卡巴培南肺炎克雷伯菌株的消毒剂耐药基因及对常用消毒剂的敏感性测定
IF 2.3 4区 医学
Microbial drug resistance Pub Date : 2024-10-01 Epub Date: 2024-08-21 DOI: 10.1089/mdr.2024.0089
Kexin Zhao, Liang Wang, Jinglan Deng, Qiuxia Zuo, Maimaiti Adila, Xiao Wang, Zhe Dai, Ping Tian
{"title":"Determining the Disinfectants Resistance Genes and the Susceptibility to Common Disinfectants of Extensively Drug-Resistant Carbapenem-Resistant <i>Klebsiella pneumoniae</i> Strains at a Tertiary Hospital in China.","authors":"Kexin Zhao, Liang Wang, Jinglan Deng, Qiuxia Zuo, Maimaiti Adila, Xiao Wang, Zhe Dai, Ping Tian","doi":"10.1089/mdr.2024.0089","DOIUrl":"10.1089/mdr.2024.0089","url":null,"abstract":"<p><p>Carbapenem-resistant <i>Klebsiella pneumoniae</i> (CRKP) infection has become a significant threat to global health. The application of chemical disinfectants is an effective infection control strategy to prevent the spread of CRKP in hospital environments. However, bacteria have shown reduced sensitivity to clinical disinfectants in recent years. Furthermore, bacteria can acquire antibiotic resistance due to the induction of disinfectants, posing a considerable challenge to hospital infection prevention and control. This study collected 68 CRKP strains from the Fifth Affiliated Hospital of Xinjiang Medical University in China from 2023 to 2024. These strains were isolated from the sputum, urine, and whole blood samples of patients diagnosed with CRKP infection. Antibiotic susceptibility tests were performed on CRKP strains. Concurrently, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of disinfectants (benzalkonium bromide, 1% iodophor disinfectant, alcohol, and chlorine-containing disinfectant) against the test isolates were determined by the broth microdilution method. The efflux pump genes (cepA, qacE, qacEΔ1, qacEΔ1-SUL1, oqxA, and oqxB) were detected using polymerase chain reaction. The results showed that 21 out of the 68 CRKP strains exhibited extensive drug resistance, whereas 47 were nonextensively drug-resistant. The MIC value for benzalkonium bromide disinfectants displayed statistically significant differences (<i>p</i> < 0.05) between extensively drug-resistant (XDR) and non-XDR strains. Additionally, the MBC values for benzalkonium bromide disinfectants and 1% iodophor disinfectants displayed statistically significant differences (<i>p</i> < 0.05) between XDR and non-XDR strains. The detection rates for the efflux pump genes were as follows: cepA 52.9%, qacE 39.7%, qacEΔ1 35.2%, qacEΔ1-SUL1 52.9%, oqxA 30.8%, and oqxB 32.3%. The detection rate of the qacEΔ1-SUL1 gene in XDR CRKP strains was significantly higher than in non-XDR CRKP strains (<i>p</i> < 0.05). This indicates a potential link between CRKP bacterial disinfectant efflux pump genes and CRKP bacterial resistance patterns. Ongoing monitoring of the declining sensitivity of XDR strains against disinfectants is essential for the effective control and prevention of superbug.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"407-414"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in the Antimicrobial Resistance and Bacterial Epidemiology of Moraxella catarrhalis from Pediatric Community-Acquired Pneumonia Patients During the COVID-19 Pandemic: A 5-Year Study at a Tertiary Hospital of Southwest China. COVID-19 大流行期间小儿社区获得性肺炎患者白喉莫拉菌的抗菌药物耐药性和细菌流行病学变化:中国西南地区一家三甲医院的五年研究。
IF 2.3 4区 医学
Microbial drug resistance Pub Date : 2024-10-01 Epub Date: 2024-08-09 DOI: 10.1089/mdr.2024.0064
Ling Ai, Chanjuan Zhou, Beizhong Liu, Liang Fang, Fang Gong
{"title":"Changes in the Antimicrobial Resistance and Bacterial Epidemiology of <i>Moraxella catarrhalis</i> from Pediatric Community-Acquired Pneumonia Patients During the COVID-19 Pandemic: A 5-Year Study at a Tertiary Hospital of Southwest China.","authors":"Ling Ai, Chanjuan Zhou, Beizhong Liu, Liang Fang, Fang Gong","doi":"10.1089/mdr.2024.0064","DOIUrl":"10.1089/mdr.2024.0064","url":null,"abstract":"<p><p>This study aimed to assess the impact of the COVID-19 pandemic on <i>Moraxella catarrhalis</i> infections in pediatric patients hospitalized with community-acquired pneumonia (CAP). The epidemiological features and antimicrobial resistance (AMR) patterns of <i>M. catarrhalis</i> were compared between the pre-pandemic period (2018-2019) and during the pandemic (2020-2022). The results revealed a marked increase in the positivity rate of <i>M. catarrhalis</i> in 2020 and 2021 compared with the pre-pandemic years. The median age of the patients increased significantly in 2021 and 2022, while the proportion of male patients decreased substantially from 2019 to 2021. In addition, there were notable changes in the co-infections of <i>Haemophilus influenzae</i>, parainfluenza virus, and respiratory syncytial virus during the COVID-19 pandemic. The AMR profile of <i>M. catarrhalis</i> also changed significantly, showing increased resistance to ampicillin, but decreased resistance to trimethoprim-sulfamethoxazole and ofloxacin, and a lower proportion of multidrug-resistant isolates. Notably, ampicillin resistance increased among <i>β</i>-lactamase-producing isolates. Before the pandemic, the number and detection rate of isolates, along with resistance to ampicillin and trimethoprim-sulfamethoxazole, were seasonally distributed, peaking in autumn and winter. However, coinciding with local COVID-19 outbreaks, these indices sharply fell in February 2020, and the number of isolates did not recover during the autumn and winter of 2022. These findings indicate that the COVID-19 pandemic has significantly altered the infection landscape of <i>M. catarrhalis</i> in pediatric CAP patients, as evidenced by shifts in the detection rate, demographic characteristics, respiratory co-infections, AMR profiles, and seasonal patterns.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"415-421"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Mutant Prevention Concentrations of Fluoroquinolones Against ESBL-Positive and ESBL-Negative Klebsiella pneumoniae Isolates from Orthopedic Patients. 比较氟喹诺酮类药物对骨科患者中 ESBL 阳性和 ESBL 阴性肺炎克雷伯菌的突变预防浓度。
IF 2.3 4区 医学
Microbial drug resistance Pub Date : 2024-09-01 Epub Date: 2024-07-17 DOI: 10.1089/mdr.2024.0023
Peng Zou, Zhiquan Chen, Jijun Tu, Xinfeng Chen, Xuejian Liu
{"title":"Comparison of Mutant Prevention Concentrations of Fluoroquinolones Against ESBL-Positive and ESBL-Negative <i>Klebsiella pneumoniae</i> Isolates from Orthopedic Patients.","authors":"Peng Zou, Zhiquan Chen, Jijun Tu, Xinfeng Chen, Xuejian Liu","doi":"10.1089/mdr.2024.0023","DOIUrl":"10.1089/mdr.2024.0023","url":null,"abstract":"<p><p>The majority of <i>Klebsiella pneumonia</i> isolates possess the extended-spectrum beta-lactamase (ESBL) enzymes. Therefore, <i>K. pneumoniae</i> can easily develop drug resistance. How to effectively overcome the problem of drug resistance in <i>K. pneumoniae</i> is still a research hotspot. This study aimed to compare the mutant prevention concentration (MPC) of ESBL-positive and ESBL-negative <i>K. pneumoniae</i> isolated from orthopedic patients, which may provide a basis for the effective use of drugs to control the enrichment of resistance mutants of <i>K. pneumoniae</i>. The MPC<sub>90</sub> values of 55 isolates of ESBL-positive <i>K. pneumoniae</i> against 4 fluoroquinolones were 32 µg/mL for levofloxacin and gatifloxacin, 16 µg/mL for ciprofloxacin, and 4 µg/mL for gemifloxacin. The selection index value was 8 for levofloxacin and ciprofloxacin and 2 for gemifloxacin and gatifloxacin, respectively. For ESBL-negative <i>K. pneumoniae</i> isolates, the MPC<sub>90</sub> values were 16 µg/mL for levofloxacin and ciprofloxacin, 4 µg/mL for gemifloxacin, and 32 µg/mL for gatifloxacin. The selection index value was 8 for levofloxacin and ciprofloxacin, 2 for gemifloxacin, and 4 for gatifloxacin. For the ESBL-positive <i>K. pneumoniae</i>, the %T>MIC<sub>90</sub> order was gemifloxacin > levofloxacin > ciprofloxacin > gatifloxacin. For the ESBL-negative <i>K. pneumoniae,</i> the %T>MIC<sub>90</sub> order was levofloxacin > gemifloxacin > ciprofloxacin > gatifloxacin. The mutant-preventing ability of gatifloxacin and gemifloxacin was the strongest among the 4 fluoroquinolones. So gemifloxacin may be the first choice of drug to treat <i>K. pneumoniae</i> infection.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"391-397"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for Microbial Drug Resistance. 罗莎琳德-富兰克林学会自豪地宣布 2023 年微生物抗药性奖获得者。
IF 2.6 4区 医学
Microbial drug resistance Pub Date : 2024-09-01 DOI: 10.1089/mdr.2024.44723.rfs2023
Dr Anna Carannante
{"title":"Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for Microbial Drug Resistance.","authors":"Dr Anna Carannante","doi":"10.1089/mdr.2024.44723.rfs2023","DOIUrl":"https://doi.org/10.1089/mdr.2024.44723.rfs2023","url":null,"abstract":"","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":"8 1","pages":"353"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug Resistance in Biofilm and Planktonic Cells of Achromobacter spp., Burkholderia spp., and Stenotrophomonas maltophilia Clinical Isolates. 临床分离菌 Achromobacter spp.、Burkholderia spp.和 Stenotrophomonas maltophilia 的生物膜和浮游细胞的耐药性。
IF 2.3 4区 医学
Microbial drug resistance Pub Date : 2024-09-01 Epub Date: 2024-07-19 DOI: 10.1089/mdr.2023.0301
Edeer Iván Montoya-Hinojosa, Licet Villarreal-Treviño, Paola Bocanegra-Ibarias, Adrián Camacho-Ortiz, Samantha Flores-Treviño
{"title":"Drug Resistance in Biofilm and Planktonic Cells of <i>Achromobacter</i> spp., <i>Burkholderia</i> spp., and <i>Stenotrophomonas maltophilia</i> Clinical Isolates.","authors":"Edeer Iván Montoya-Hinojosa, Licet Villarreal-Treviño, Paola Bocanegra-Ibarias, Adrián Camacho-Ortiz, Samantha Flores-Treviño","doi":"10.1089/mdr.2023.0301","DOIUrl":"10.1089/mdr.2023.0301","url":null,"abstract":"<p><p><b><i>Background:</i></b> Biofilm production in nonfermenting Gram-negative bacteria influences drug resistance. The aim of this work was to evaluate the effect of different antibiotics on biofilm eradication of clinical isolates of <i>Achromobacter</i>, <i>Burkholderia</i>, and <i>Stenotrophomonas maltophilia</i>. <b><i>Methods:</i></b> Clinical isolates were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry in a third-level hospital in Monterrey, Mexico. Crystal violet staining was used to determine biofilm production. Drug susceptibility testing was determined by broth microdilution in planktonic cells and biofilm cells. <b><i>Results:</i></b> Resistance in planktonic cells was moderate to trimethoprim-sulfamethoxazole, and low to chloramphenicol, minocycline, levofloxacin (<i>S. maltophilia</i> and <i>Burkholderia</i>), ceftazidime, and meropenem (<i>Burkholderia</i> and <i>Achromobacter</i>). Biofilm eradication required higher drug concentrations of ceftazidime, chloramphenicol, levofloxacin, and trimethoprim-sulfamethoxazole than planktonic cells (<i>p</i> < 0.05). Levofloxacin showed biofilm eradication activity in <i>S. maltophilia,</i> minocycline and meropenem in <i>Burkholderia</i>, and meropenem in <i>Achromobacter</i>. <b><i>Conclusions:</i></b> Drug resistance increased due to biofilm production for some antibiotics, particularly ceftazidime and trimethoprim-sulfamethoxazole for all three pathogens, chloramphenicol for <i>S. maltophilia</i> and <i>Burkholderia,</i> and levofloxacin for <i>Burkholderia.</i> Some antibiotics could be used for the treatment of biofilm-associated infections in our population, such as levofloxacin for <i>S. maltophilia,</i> minocycline and meropenem for <i>Burkholderia</i>, and meropenem for <i>Achromobacter</i>.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"354-362"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioflavonoid Baicalein Modulates Tetracycline Resistance by Inhibiting Efflux Pump in Staphylococcus aureus. 生物黄酮黄芩素通过抑制金黄色葡萄球菌的外排泵调节四环素耐药性
IF 2.3 4区 医学
Microbial drug resistance Pub Date : 2024-09-01 Epub Date: 2024-08-12 DOI: 10.1089/mdr.2024.0099
Soumitra Moulick, Dijendra Nath Roy
{"title":"Bioflavonoid Baicalein Modulates Tetracycline Resistance by Inhibiting Efflux Pump in <i>Staphylococcus aureus</i>.","authors":"Soumitra Moulick, Dijendra Nath Roy","doi":"10.1089/mdr.2024.0099","DOIUrl":"10.1089/mdr.2024.0099","url":null,"abstract":"<p><p>The rise in antibiotic resistance among bacterial pathogens, particularly <i>Staphylococcus aureus</i>, has become a critical global health issue, necessitating the search for novel antimicrobial agents. <i>S. aureus</i> uses various mechanisms to resist antibiotics, including the activation of efflux pumps, biofilm formation, and enzymatic modification of drugs. This study explores the potential of baicalein, a bioflavonoid from <i>Scutellaria baicalensis</i>, in modulating tetracycline resistance in <i>S. aureus</i> by inhibiting efflux pumps. The synergistic action of baicalein and tetracycline was evaluated through various assays. The minimum inhibitory concentration (MIC) of baicalein and tetracycline against <i>S. aureus</i> was 256 and 1.0 μg/mL, respectively. Baicalein at 64 μg/mL reduced the MIC of tetracycline by eightfold, indicating a synergistic effect (fractional inhibitory concentration index: 0.375). Time-kill kinetics demonstrated a 1.0 log CFU/mL reduction in bacterial count after 24 hours with the combination treatment. The ethidium bromide accumulation assay showed that baicalein mediated significant inhibition of efflux pumps, with a dose-dependent increase in fluorescence. In addition, baicalein inhibited DNA synthesis by 73% alone and 92% in combination with tetracycline. It also markedly reduced biofilm formation and the invasiveness of <i>S. aureus</i> into HeLa cells by 52% at 64 μg/mL. These findings suggest that baicalein enhances tetracycline efficacy and could be a promising adjunct therapy to combat multidrug-resistant <i>S. aureus</i> infections.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"363-371"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Expression of Efflux Pumps in Pseudomonas aeruginosa in Exposure to Sodium Dodecyl Sulfate, Didecyldimethylammonium Chloride, and Octenidine Dihydrochloride. 评估铜绿假单胞菌在十二烷基硫酸钠、双癸基二甲基氯化铵和盐酸奥替尼啶作用下的外排泵表达。
IF 2.3 4区 医学
Microbial drug resistance Pub Date : 2024-09-01 Epub Date: 2024-07-31 DOI: 10.1089/mdr.2024.0070
Khawla Alsamhary
{"title":"Evaluating the Expression of Efflux Pumps in <i>Pseudomonas aeruginosa</i> in Exposure to Sodium Dodecyl Sulfate, Didecyldimethylammonium Chloride, and Octenidine Dihydrochloride.","authors":"Khawla Alsamhary","doi":"10.1089/mdr.2024.0070","DOIUrl":"10.1089/mdr.2024.0070","url":null,"abstract":"<p><p>Emerging resistance of Gram-negative bacteria, including <i>Pseudomonas aeruginosa</i>, to commonly used detergents and disinfectant is encountering us with hazard. Inappropriate use of disinfectants has forced bacteria to gain resistance. The ability of bacteria to extrude substrates from the cellular interior to the external environment has enabled them to persist in exposure to toxic compounds, which is due to existence of transport proteins. Efflux pumps, in Gram-negative bacteria, are proteins responsible for exporting molecules outside of the cell, by crossing the two membranes. In this study, 40 <i>P. aeruginosa</i> strains from hospitals, clinics, and burn center laundries and 40 <i>P. aeruginosa</i> strains from urban laundries were collected. This study evaluated the minimum inhibitory concentration (MIC) level of sodium dodecyl sulfate (SDS), didecyldimethylammonium chloride (DDAC), and octenidine dihydrochloride (Od) in <i>P. aeruginosa</i> strains. The real-time PCR was carried out to evaluate the expression of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux system. The obtained results indicated a higher MIC level for SDS, DDAC, and Od in medical laundries. The sub-MIC level of DDAC and Od increased the expression level of MexAB-OprM, MexCD-OprJ, and MexXY-OprM in <i>P. aeruginosa</i> strains, suggesting that efflux pumps contribute to disinfectant resistance in <i>P. aeruginosa</i>.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"385-390"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信