Yushi Liu , Wan-Qiu Liu , Shuhui Huang , Huiling Xu , Haofan Lu , Changzhu Wu , Jian Li
{"title":"Cell-free metabolic engineering enables selective biotransformation of fatty acids to value-added chemicals","authors":"Yushi Liu , Wan-Qiu Liu , Shuhui Huang , Huiling Xu , Haofan Lu , Changzhu Wu , Jian Li","doi":"10.1016/j.mec.2022.e00217","DOIUrl":"10.1016/j.mec.2022.e00217","url":null,"abstract":"<div><p>Fatty acid-derived products such as alkanes, fatty aldehydes, and fatty alcohols have many applications in the chemical industry. These products are predominately produced from fossil resources, but their production processes are often not environmentally friendly. While microbes like <em>Escherichia coli</em> have been engineered to convert fatty acids to corresponding products, the design and optimization of metabolic pathways in cells for high productivity is challenging due to low mass transfer, heavy metabolic burden, and intermediate/product toxicity. Here, we describe an <em>E. coli</em>-based cell-free protein synthesis (CFPS) platform for <em>in vitro</em> conversion of long-chain fatty acids to value-added chemicals with product selectivity, which can also avoid the above issues when using microbial production systems. We achieve the selective biotransformation by cell-free expression of different enzymes and the use of different conditions (e.g., light and heating) to drive the biocatalysis toward different final products. Specifically, in response to blue light, cell-free expressed fatty acid photodecarboxylase (CvFAP, a photoenzyme) was able to convert fatty acids to alkanes with approximately 90% conversion. When the expressed enzyme was switched to carboxylic acid reductase (CAR), fatty acids were reduced to corresponding fatty aldehydes, which, however, could be further reduced to fatty alcohols by endogenous reductases in the cell-free system. By using a thermostable CAR and a heating treatment, the endogenous reductases were deactivated and fatty aldehydes could be selectively accumulated (>97% in the product mixture) without over-reduction to alcohols. Overall, our cell-free platform provides a new strategy to convert fatty acids to valuable chemicals with notable properties of operation flexibility, reaction controllability, and product selectivity.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00217"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f3/36/main.PMC9791597.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10509847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Razan Z. Yahya, Gordon B. Wellman, Sebastian Overmans, Kyle J. Lauersen
{"title":"Engineered production of isoprene from the model green microalga Chlamydomonas reinhardtii","authors":"Razan Z. Yahya, Gordon B. Wellman, Sebastian Overmans, Kyle J. Lauersen","doi":"10.1016/j.mec.2023.e00221","DOIUrl":"https://doi.org/10.1016/j.mec.2023.e00221","url":null,"abstract":"<div><p>Isoprene is a clear, colorless, volatile 5-carbon hydrocarbon that is one monomer of all cellular isoprenoids and a platform chemical with multiple applications in industry. Many plants have evolved isoprene synthases (IspSs) with the capacity to liberate isoprene from dimethylallyl diphosphate (DMADP) as part of cellular thermotolerance mechanisms. Isoprene is hydrophobic and volatile, rapidly leaves plant tissues and is one of the main carbon emission sources from vegetation globally. The universality of isoprenoid metabolism allows volatile isoprene production from microbes expressing heterologous IspSs. Here, we compared heterologous overexpression from the nuclear genome and localization into the plastid of four plant terpene synthases (TPs) in the green microalga <em>Chlamydomonas reinhardtii</em>. Using sealed vial mixotrophic cultivation, direct quantification of isoprene production was achieved from the headspace of living cultures, with the highest isoprene production observed in algae expressing the <em>Ipomoea batatas</em> IspS. Perturbations of the downstream carotenoid pathway through keto carotenoid biosynthesis enhanced isoprene titers, which could be further enhanced by increasing flux towards DMADP through heterologous co-expression of a yeast isopentenyl-DP delta isomerase. Multiplexed controlled-environment testing revealed that cultivation temperature, rather than illumination intensity, was the main factor affecting isoprene yield from the engineered alga. This is the first report of heterologous isoprene production from a eukaryotic alga and sets a foundation for further exploration of carbon conversion to this commodity chemical.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00221"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50170513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammadamin Shahsavarani , Joseph Christian Utomo , Rahul Kumar , Melina Paz-Galeano , Jorge Jonathan Oswaldo Garza-García , Zhan Mai , Dae-Kyun Ro , Yang Qu
{"title":"Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast","authors":"Mohammadamin Shahsavarani , Joseph Christian Utomo , Rahul Kumar , Melina Paz-Galeano , Jorge Jonathan Oswaldo Garza-García , Zhan Mai , Dae-Kyun Ro , Yang Qu","doi":"10.1016/j.mec.2022.e00215","DOIUrl":"10.1016/j.mec.2022.e00215","url":null,"abstract":"<div><p>With over 3000 reported structures, monoterpenoid indole alkaloids (MIAs) constitute one of the largest alkaloid groups in nature, including the clinically important anticancer drug vinblastine and its semi-synthetic derivatives from <em>Catharanthus roseus</em> (Madagascar’s periwinkle). With the elucidation of the complete 28-step biosynthesis for anhydrovinblastine, it is possible to investigate the heterologous production of vinblastine and other medicinal MIAs. In this study, we successfully expressed the flavoenzyme <em>O</em>-acetylstemmadenine oxidase in <em>Saccharomyces cerevisiae</em> (baker’s yeast) by signal peptide modification, which is a vinblastine biosynthetic gene that has not been functionally expressed in this system. We also reported the simultaneous integration of ∼18 kb MIA biosynthetic gene cassettes as single copies into four genomic loci of baker’s yeast by CRISPR-Cas9, which enabled the biosynthesis of vinblastine precursors catharanthine and tabersonine from the feedstocks secologanin and tryptamine. We further demonstrated the biosynthesis of fluorinated and hydroxylated catharanthine and tabersonine derivatives using our yeasts, which showed that the MIA biosynthesis accommodates unnatural substrates, and the system can be further explored to produce other complex MIAs.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00215"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b6/12/main.PMC9772838.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10804046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zong-Yen Wu , Wan Sun , Yihui Shen , Jimmy Pratas , Patrick F. Suthers , Ping-Hung Hsieh , Sudharsan Dwaraknath , Joshua D. Rabinowitz , Costas D. Maranas , Zengyi Shao , Yasuo Yoshikuni
{"title":"Metabolic engineering of low-pH-tolerant non-model yeast, Issatchenkia orientalis, for production of citramalate","authors":"Zong-Yen Wu , Wan Sun , Yihui Shen , Jimmy Pratas , Patrick F. Suthers , Ping-Hung Hsieh , Sudharsan Dwaraknath , Joshua D. Rabinowitz , Costas D. Maranas , Zengyi Shao , Yasuo Yoshikuni","doi":"10.1016/j.mec.2023.e00220","DOIUrl":"https://doi.org/10.1016/j.mec.2023.e00220","url":null,"abstract":"<div><p>Methyl methacrylate (MMA) is an important petrochemical with many applications. However, its manufacture has a large environmental footprint. Combined biological and chemical synthesis (semisynthesis) may be a promising alternative to reduce both cost and environmental impact, but strains that can produce the MMA precursor (citramalate) at low pH are required. A non-conventional yeast, <em>Issatchenkia orientalis</em>, may prove ideal, as it can survive extremely low pH. Here, we demonstrate the engineering of <em>I. orientalis</em> for citramalate production. Using sequence similarity network analysis and subsequent DNA synthesis, we selected a more active citramalate synthase gene (<em>cimA</em>) variant for expression in <em>I. orientalis</em>. We then adapted a piggyBac transposon system for <em>I. orientalis</em> that allowed us to simultaneously explore the effects of different <em>cimA</em> gene copy numbers and integration locations. A batch fermentation showed the genome-integrated-<em>cimA</em> strains produced 2.0 g/L citramalate in 48 h and a yield of up to 7% mol citramalate/mol consumed glucose. These results demonstrate the potential of <em>I. orientalis</em> as a chassis for citramalate production.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00220"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50170512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Connor , Caleb Wigham , Yang Bai , Manish Rai , Sebastian Nassif , Mattheos Koffas , R. Helen Zha
{"title":"Novel insights into construct toxicity, strain optimization, and primary sequence design for producing recombinant silk fibroin and elastin-like peptide in E. coli","authors":"Alexander Connor , Caleb Wigham , Yang Bai , Manish Rai , Sebastian Nassif , Mattheos Koffas , R. Helen Zha","doi":"10.1016/j.mec.2023.e00219","DOIUrl":"https://doi.org/10.1016/j.mec.2023.e00219","url":null,"abstract":"<div><p>Spider silk proteins (spidroins) are a remarkable class of biomaterials that exhibit a unique combination of high-value attributes and can be processed into numerous morphologies for targeted applications in diverse fields. Recombinant production of spidroins represents the most promising route towards establishing the industrial production of the material, however, recombinant spider silk production suffers from fundamental difficulties that includes low titers, plasmid instability, and translational inefficiencies. In this work, we sought to gain a deeper understanding of upstream bottlenecks that exist in the field through the production of a panel of systematically varied spidroin sequences in multiple <em>E. coli</em> strains. A restriction on basal expression and specific genetic mutations related to stress responses were identified as primary factors that facilitated higher titers of the recombinant silk constructs. Using these findings, a novel strain of <em>E. coli</em> was created that produces recombinant silk constructs at levels 4–33 times higher than standard BL21(DE3). However, these findings did not extend to a similar recombinant protein, an elastin-like peptide. It was found that the recombinant silk proteins, but not the elastin-like peptide, exert toxicity on the <em>E. coli</em> host system, possibly through their high degree of intrinsic disorder. Along with strain engineering, a bioprocess design that utilizes longer culturing times and attenuated induction was found to raise recombinant silk titers by seven-fold and mitigate toxicity. Targeted alteration to the primary sequence of the recombinant silk constructs was also found to mitigate toxicity. These findings identify multiple points of focus for future work seeking to further optimize the recombinant production of silk proteins and is the first work to identify the intrinsic disorder and subsequent toxicity of certain spidroin constructs as a primary factor related to the difficulties of production.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00219"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50170510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Venkatachalam Narayanan , Anders G. Sandström , Marie F. Gorwa-Grauslund
{"title":"Re-evaluation of the impact of BUD21 deletion on xylose utilization by Saccharomyces cerevisiae","authors":"Venkatachalam Narayanan , Anders G. Sandström , Marie F. Gorwa-Grauslund","doi":"10.1016/j.mec.2023.e00218","DOIUrl":"https://doi.org/10.1016/j.mec.2023.e00218","url":null,"abstract":"<div><p>Various rational metabolic engineering and random approaches have been applied to introduce and improve xylose utilization and ethanol productivity by <em>Saccharomyces cerevisiae</em>. Among them, the <em>BUD21</em> gene was identified as an interesting candidate for enhancing xylose consumption as its deletion appeared to be sufficient to improve growth, substrate utilization and ethanol productivity on xylose, even in a laboratory strain lacking a heterologous xylose pathway. The present study aimed at studying the influence of <em>BUD21</em> deletion in recombinant strains carrying heterologous oxido-reductive xylose utilization pathway. The positive effect of <em>BUD21</em> gene deletion on aerobic growth and xylose utilization could not be confirmed in two non-engineered laboratory strains (BY4741 and CEN.PK 113-7D) that were grown in YP rich medium with 20 g/L xylose as sole carbon source, despite the fact that effective deletion of <em>BUD21</em> gene was confirmed using both genotypic (colony PCR) and phenotypic (heat sensitive phenotype of the <em>BUD21</em> deletion mutant) control experiments. Therefore, the effect of <em>BUD21</em> deletion on xylose fermentation might be strain- or medium-dependent.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00218"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50170515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aurélie Bouin , Congqiang Zhang , Nic D. Lindley , Gilles Truan , Thomas Lautier
{"title":"Exploring linker's sequence diversity to fuse carotene cyclase and hydroxylase for zeaxanthin biosynthesis","authors":"Aurélie Bouin , Congqiang Zhang , Nic D. Lindley , Gilles Truan , Thomas Lautier","doi":"10.1016/j.mec.2023.e00222","DOIUrl":"10.1016/j.mec.2023.e00222","url":null,"abstract":"<div><p>Fusion of catalytic domains can accelerate cascade reactions by bringing enzymes in close proximity. However, the design of a protein fusion and the choice of a linker are often challenging and lack of guidance. To determine the impact of linker parameters on fusion proteins, a library of linkers featuring various lengths, secondary structures, extensions and hydrophobicities was designed. Linkers were used to fuse the lycopene cyclase (crtY) and β-carotene hydroxylase (crtZ) from <em>Pantoea ananatis</em> to create fusion proteins to produce zeaxanthin. The fusion efficiency was assessed by comparing the carotenoids content in a carotenoid-producer <em>Escherichia coli</em> strain. It was shown that in addition to the orientation of the enzymes and the size of the linker, the first amino acid of the linker is also a key factor in determining the efficiency of a protein fusion. The wide range of sequence diversity in our linker library enables the fine tuning of protein fusion and this approach can be easily transferred to other enzyme couples.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00222"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bc/34/main.PMC10165439.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9452847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jasper L.S.P. Driessen , Josefin Johnsen , Ivan Pogrebnyakov , Elsayed T.T. Mohamed , Solange I. Mussatto , Adam M. Feist , Sheila I. Jensen , Alex T. Nielsen
{"title":"Adaptive laboratory evolution of Bacillus subtilis to overcome toxicity of lignocellulosic hydrolysate derived from Distiller's dried grains with solubles (DDGS)","authors":"Jasper L.S.P. Driessen , Josefin Johnsen , Ivan Pogrebnyakov , Elsayed T.T. Mohamed , Solange I. Mussatto , Adam M. Feist , Sheila I. Jensen , Alex T. Nielsen","doi":"10.1016/j.mec.2023.e00223","DOIUrl":"https://doi.org/10.1016/j.mec.2023.e00223","url":null,"abstract":"<div><p>Microbial tolerance to toxic compounds formed during biomass pretreatment is a significant challenge to produce bio-based products from lignocellulose cost effectively. Rational engineering can be problematic due to insufficient prerequisite knowledge of tolerance mechanisms. Therefore, adaptive laboratory evolution was applied to obtain 20 tolerant lineages of <em>Bacillus subtilis</em> strains able to utilize Distiller's Dried Grains with Solubles-derived (DDGS) hydrolysate. Evolved strains showed both improved growth performance and retained heterologous enzyme production using 100% hydrolysate-based medium, whereas growth of the starting strains was essentially absent. Whole-genome resequencing revealed that evolved isolates acquired mutations in the global regulator c<em>odY</em> in 15 of the 19 sequenced isolates. Furthermore, mutations in genes related to oxidative stress (<em>katA</em>, <em>perR</em>) and flagella function appeared in both tolerance and control evolution experiments without toxic compounds. Overall, tolerance adaptive laboratory evolution yielded strains able to utilize DDGS-hydrolysate to produce enzymes and hence proved to be a valuable tool for the valorization of lignocellulose.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00223"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50170514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chien-Yuan Lin , Yang Tian , Kimberly Nelson-Vasilchik , Joel Hague , Ramu Kakumanu , Mi Yeon Lee , Venkataramana R. Pidatala , Jessica Trinh , Christopher M. De Ben , Jutta Dalton , Trent R. Northen , Edward E.K. Baidoo , Blake A. Simmons , John M. Gladden , Corinne D. Scown , Daniel H. Putnam , Albert P. Kausch , Henrik V. Scheller , Aymerick Eudes
{"title":"Engineering sorghum for higher 4-hydroxybenzoic acid content","authors":"Chien-Yuan Lin , Yang Tian , Kimberly Nelson-Vasilchik , Joel Hague , Ramu Kakumanu , Mi Yeon Lee , Venkataramana R. Pidatala , Jessica Trinh , Christopher M. De Ben , Jutta Dalton , Trent R. Northen , Edward E.K. Baidoo , Blake A. Simmons , John M. Gladden , Corinne D. Scown , Daniel H. Putnam , Albert P. Kausch , Henrik V. Scheller , Aymerick Eudes","doi":"10.1016/j.mec.2022.e00207","DOIUrl":"10.1016/j.mec.2022.e00207","url":null,"abstract":"<div><p>Engineering bioenergy crops to accumulate coproducts <em>in planta</em> can increase the value of lignocellulosic biomass and enable a sustainable bioeconomy. In this study, we engineered sorghum with a bacterial gene encoding a chorismate pyruvate-lyase (<em>ubiC</em>) to reroute the plastidial pool of chorismate from the shikimate pathway into the valuable compound 4-hydroxybenzoic acid (4-HBA). A gene encoding a feedback-resistant version of 3-deoxy-<span>d</span>-arabino-heptulonate-7-phosphate synthase (<em>aroG</em>) was also introduced in an attempt to increase the carbon flux through the shikimate pathway. At the full maturity and senesced stage, two independent lines that co-express <em>ubiC</em> and <em>aroG</em> produced 1.5 and 1.7 dw% of 4-HBA in biomass, which represents 36- and 40-fold increases compared to the titer measured in wildtype. The two transgenic lines showed no obvious phenotypes, growth defects, nor alteration of cell wall polysaccharide content when cultivated under controlled conditions. In the field, when harvested before grain maturity, transgenic lines contained 0.8 and 1.2 dw% of 4-HBA, which represent economically relevant titers based on recent technoeconomic analysis. Only a slight reduction (11–15%) in biomass yield was observed in transgenics grown under natural environment. This work provides the first metabolic engineering steps toward 4-HBA overproduction in the bioenergy crop sorghum to improve the economics of biorefineries by accumulating a value-added coproduct that can be recovered from biomass and provide an additional revenue stream.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"15 ","pages":"Article e00207"},"PeriodicalIF":5.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519784/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40393831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering of Yarrowia lipolytica for terpenoid production","authors":"Jonathan Asmund Arnesen, Irina Borodina","doi":"10.1016/j.mec.2022.e00213","DOIUrl":"10.1016/j.mec.2022.e00213","url":null,"abstract":"<div><p>Terpenoids are a group of chemicals of great importance for human health and prosperity. Terpenoids can be used for human and animal nutrition, treating diseases, enhancing agricultural output, biofuels, fragrances, cosmetics, and flavouring. However, due to the rapid depletion of global natural resources and manufacturing practices relying on unsustainable petrochemical synthesis, there is a need for economic alternatives to supply the world's demand for these essential chemicals. Microbial biosynthesis offers the means to develop scalable and sustainable bioprocesses for terpenoid production. In particular, the non-conventional yeast <em>Yarrowia lipolytica</em> demonstrates excellent potential as a chassis for terpenoid production due to its amenability to industrial production scale-up, genetic engineering, and high accumulation of terpenoid precursors. This review aims to illustrate the scientific progress in developing <em>Y. lipolytica</em> terpenoid cell factories, focusing on metabolic engineering approaches for strain improvement and cultivation optimization.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"15 ","pages":"Article e00213"},"PeriodicalIF":5.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40691333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}